fin_collections.v 7.17 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on finite collections. Most
importantly, it implements a fold and size function and some useful induction
principles on finite collections . *)
6
7
Require Import Permutation ars listset.
Require Export numbers collections.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
10
11
Instance collection_size `{Elements A C} : Size C := length  elements.
Definition collection_fold `{Elements A C} {B}
  (f : A  B  B) (b : B) : C  B := foldr f b  elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
14
15

Section fin_collection.
Context `{FinCollection A C}.

16
Global Instance elements_proper: Proper (() ==> ()) elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
Proof.
  intros ?? E. apply NoDup_Permutation.
19
20
21
  * apply NoDup_elements.
  * apply NoDup_elements.
  * intros. by rewrite !elem_of_elements, E.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
Qed.
Global Instance collection_size_proper: Proper (() ==> (=)) size.
24
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
25
Lemma size_empty : size ( : C) = 0.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Proof.
27
  unfold size, collection_size. simpl.
28
  rewrite (elem_of_nil_inv (elements )); [done |].
29
  intro. rewrite elem_of_elements. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
Qed.
31
Lemma size_empty_inv (X : C) : size X = 0  X  .
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Proof.
33
  intros. apply equiv_empty. intro. rewrite <-elem_of_elements.
34
  rewrite (nil_length_inv (elements X)). by rewrite elem_of_nil. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Qed.
36
Lemma size_empty_iff (X : C) : size X = 0  X  .
37
Proof. split. apply size_empty_inv. intros E. by rewrite E, size_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
38
39
Lemma size_non_empty_iff (X : C) : size X  0  X  .
Proof. by rewrite size_empty_iff. Qed.
40
Lemma size_singleton (x : A) : size {[ x ]} = 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
Proof.
42
  change (length (elements {[ x ]}) = length [x]).
Robbert Krebbers's avatar
Robbert Krebbers committed
43
  apply Permutation_length, NoDup_Permutation.
44
  * apply NoDup_elements.
45
  * apply NoDup_singleton.
46
47
  * intros. by rewrite elem_of_elements,
      elem_of_singleton, elem_of_list_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
50
Qed.
Lemma size_singleton_inv X x y : size X = 1  x  X  y  X  x = y.
Proof.
51
  unfold size, collection_size. simpl. rewrite <-!elem_of_elements.
52
  generalize (elements X). intros [|? l]; intro; simplify_equality'.
53
  rewrite (nil_length_inv l), !elem_of_list_singleton by done. congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
Qed.
55
Lemma collection_choose_or_empty X : ( x, x  X)  X  .
56
Proof.
57
58
59
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  * apply equiv_empty. intros x. by rewrite <-elem_of_elements, HX, elem_of_nil.
  * exists x. rewrite <-elem_of_elements, HX. by left.
60
Qed.
61
62
63
64
Lemma collection_choose X : X     x, x  X.
Proof. intros. by destruct (collection_choose_or_empty X). Qed.
Lemma collection_choose_L `{!LeibnizEquiv C} X : X     x, x  X.
Proof. unfold_leibniz. apply collection_choose. Qed.
65
Lemma size_pos_elem_of X : 0 < size X   x, x  X.
66
Proof.
67
68
  intros Hsz. destruct (collection_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, size_empty; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Qed.
70
Lemma size_1_elem_of X : size X = 1   x, X  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Proof.
72
73
74
75
  intros E. destruct (size_pos_elem_of X); auto with lia.
  exists x. apply elem_of_equiv. split.
  * rewrite elem_of_singleton. eauto using size_singleton_inv.
  * solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
78
Qed.
Lemma size_union X Y : X  Y    size (X  Y) = size X + size Y.
Proof.
79
  intros [E _]. unfold size, collection_size. simpl. rewrite <-app_length.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  apply Permutation_length, NoDup_Permutation.
81
82
83
84
  * apply NoDup_elements.
  * apply NoDup_app; repeat split; try apply NoDup_elements.
    intros x. rewrite !elem_of_elements. esolve_elem_of.
  * intros. rewrite elem_of_app, !elem_of_elements. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
Qed.
86
87
Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
Proof.
88
  refine (cast_if (decide_rel () x (elements X)));
89
    by rewrite <-(elem_of_elements _).
90
91
92
93
Defined.
Global Program Instance collection_subseteq_dec_slow (X Y : C) :
    Decision (X  Y) | 100 :=
  match decide_rel (=) (size (X  Y)) 0 with
94
  | left E1 => left _ | right E1 => right _
95
96
  end.
Next Obligation.
97
98
  intros x Ex; apply dec_stable; intro. destruct (proj1 (elem_of_empty x)).
  apply (size_empty_inv _ E1). by rewrite elem_of_difference.
99
100
Qed.
Next Obligation.
101
102
  intros E2. destruct E1. apply size_empty_iff, equiv_empty. intros x.
  rewrite elem_of_difference. intros [E3 ?]. by apply E2 in E3.
103
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
Lemma size_union_alt X Y : size (X  Y) = size X + size (Y  X).
105
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
  rewrite <-size_union by solve_elem_of.
  setoid_replace (Y  X) with ((Y  X)  X) by esolve_elem_of.
  rewrite <-union_difference, (commutative ()); solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
110
Qed.
Lemma subseteq_size X Y : X  Y  size X  size Y.
111
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
Lemma subset_size X Y : X  Y  size X < size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
115
116
117
  intros. rewrite (union_difference X Y) by solve_elem_of.
  rewrite size_union_alt, difference_twice.
  cut (size (Y  X)  0); [lia |].
  by apply size_non_empty_iff, non_empty_difference.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Qed.
119
Lemma collection_wf : wf (strict (@subseteq C _)).
120
Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
Lemma collection_ind (P : C  Prop) :
122
  Proper (() ==> iff) P 
123
  P   ( x X, x  X  P X  P ({[ x ]}  X))   X, P X.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
  intros ? Hemp Hadd. apply well_founded_induction with ().
  { apply collection_wf. }
127
  intros X IH. destruct (collection_choose_or_empty X) as [[x ?]|HX].
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
  * rewrite (union_difference {[ x ]} X) by solve_elem_of.
    apply Hadd. solve_elem_of. apply IH. esolve_elem_of.
  * by rewrite HX.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133
Qed.
Lemma collection_fold_ind {B} (P : B  C  Prop) (f : A  B  B) (b : B) :
  Proper ((=) ==> () ==> iff) P 
134
  P b   ( x X r, x  X  P r X  P (f x r) ({[ x ]}  X)) 
135
   X, P (collection_fold f b X) X.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
137
Proof.
  intros ? Hemp Hadd.
138
  cut ( l, NoDup l   X, ( x, x  X  x  l)  P (foldr f b l) X).
139
140
  { intros help ?. apply help; [apply NoDup_elements|].
    symmetry. apply elem_of_elements. }
Robbert Krebbers's avatar
Robbert Krebbers committed
141
  induction 1 as [|x l ?? IH]; simpl.
142
  * intros X HX. setoid_rewrite elem_of_nil in HX.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
    rewrite equiv_empty. done. esolve_elem_of.
144
  * intros X HX. setoid_rewrite elem_of_cons in HX.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
146
    rewrite (union_difference {[ x ]} X) by esolve_elem_of.
    apply Hadd. solve_elem_of. apply IH. esolve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
147
Qed.
148
149
Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
    (f : A  B  B) (b : B) `{!Proper ((=) ==> R ==> R) f}
150
151
    (Hf :  a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
  Proper (() ==> R) (collection_fold f b).
152
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
153
154
Global Instance set_Forall_dec `(P : A  Prop)
  `{ x, Decision (P x)} X : Decision (set_Forall P X) | 100.
155
156
Proof.
  refine (cast_if (decide (Forall P (elements X))));
157
    abstract (unfold set_Forall; setoid_rewrite <-elem_of_elements;
158
      by rewrite <-Forall_forall).
159
Defined.
160
161
Global Instance set_Exists_dec `(P : A  Prop) `{ x, Decision (P x)} X :
  Decision (set_Exists P X) | 100.
162
163
Proof.
  refine (cast_if (decide (Exists P (elements X))));
164
    abstract (unfold set_Exists; setoid_rewrite <-elem_of_elements;
165
      by rewrite <-Exists_exists).
166
Defined.
167
Global Instance rel_elem_of_dec `{ x y, Decision (R x y)} x X :
168
  Decision (elem_of_upto R x X) | 100 := decide (set_Exists (R x) X).
Robbert Krebbers's avatar
Robbert Krebbers committed
169
End fin_collection.