base.v 52.9 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
7

8
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Setoid.
9
Set Default Proof Using "Type".
10
11
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
12

Ralf Jung's avatar
Ralf Jung committed
13
14
(** * Enable implicit generalization. *)
(** This option enables implicit generalization in arguments of the form
15
16
17
18
19
20
   `{...} (i.e., anonymous arguments).  Unfortunately, it also enables
   implicit generalization in `Instance`.  We think that the fact taht both
   behaviors are coupled together is a [bug in
   Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
36
Obligation Tactic := idtac.
37
38

(** 3. Hide obligations from the results of the [Search] commands. *)
39
Add Search Blacklist "_obligation_".
Robbert Krebbers's avatar
Robbert Krebbers committed
40

41
(** * Sealing off definitions *)
Ralf Jung's avatar
Ralf Jung committed
42
43
44
45
Section seal.
  Local Set Primitive Projections.
  Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
Ralf Jung's avatar
Ralf Jung committed
46
47
Arguments unseal {_ _} _ : assert.
Arguments seal_eq {_ _} _ : assert.
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
(** * Non-backtracking type classes *)
(** The type class [NoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.

The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.

See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
Class NoBackTrack (P : Prop) := { no_backtrack : P }.
Hint Extern 0 (NoBackTrack _) => constructor; apply _ : typeclass_instances.

65
66
67
68
(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
establish [R], i.e. does not have the behavior of a conditional. Furthermore,
note that [TCOr (TCAnd P Q) (TCAnd (TCNot P) R)] would not work; we generally
Robbert Krebbers's avatar
Robbert Krebbers committed
69
would not be able to prove the negation of [P]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Inductive TCIf (P Q R : Prop) : Prop :=
71
72
73
74
75
76
77
78
  | TCIf_true : P  Q  TCIf P Q R
  | TCIf_false : R  TCIf P Q R.
Existing Class TCIf.

Hint Extern 0 (TCIf _ _ _) =>
  first [apply TCIf_true; [apply _|]
        |apply TCIf_false] : typeclass_instances.

79
(** * Typeclass opaque definitions *)
Ralf Jung's avatar
Ralf Jung committed
80
(** The constant [tc_opaque] is used to make definitions opaque for just type
81
82
83
84
85
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Arguments tc_opaque {_} _ /.

Ralf Jung's avatar
Ralf Jung committed
86
(** Below we define type class versions of the common logical operators. It is
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
102
Inductive TCOr (P1 P2 : Prop) : Prop :=
103
104
105
106
107
  | TCOr_l : P1  TCOr P1 P2
  | TCOr_r : P2  TCOr P1 P2.
Existing Class TCOr.
Existing Instance TCOr_l | 9.
Existing Instance TCOr_r | 10.
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1  P2  TCAnd P1 P2.
110
111
Existing Class TCAnd.
Existing Instance TCAnd_intro.
112

113
114
115
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Existing Instance TCTrue_intro.
116

117
118
119
120
121
122
123
Inductive TCForall {A} (P : A  Prop) : list A  Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x  TCForall P xs  TCForall P (x :: xs).
Existing Class TCForall.
Existing Instance TCForall_nil.
Existing Instance TCForall_cons.

Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
126
127
128
129
130
131
Inductive TCForall2 {A B} (P : A  B  Prop) : list A  list B  Prop :=
  | TCForall2_nil : TCForall2 P [] []
  | TCForall2_cons x y xs ys :
     P x y  TCForall2 P xs ys  TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Existing Instance TCForall2_nil.
Existing Instance TCForall2_cons.

132
133
134
135
Inductive TCEq {A} (x : A) : A  Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Existing Instance TCEq_refl.

Robbert Krebbers's avatar
Robbert Krebbers committed
136
137
138
139
140
Inductive TCDiag {A} (C : A  Prop) : A  A  Prop :=
  | TCDiag_diag x : C x  TCDiag C x x.
Existing Class TCDiag.
Existing Instance TCDiag_diag.

141
(** Throughout this development we use [stdpp_scope] for all general purpose
142
notations that do not belong to a more specific scope. *)
143
144
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.
145

146
(** Change [True] and [False] into notations in order to enable overloading.
147
148
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
149
150
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152


153
(** * Equality *)
154
(** Introduce some Haskell style like notations. *)
155
156
157
158
159
160
Notation "(=)" := eq (only parsing) : stdpp_scope.
Notation "( x =)" := (eq x) (only parsing) : stdpp_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : stdpp_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : stdpp_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
161

162
163
164
165
166
167
Infix "=@{ A }" := (@eq A)
  (at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Notation "(≠@{ A } )" := (λ X Y, ¬X =@{A} Y) (only parsing) : stdpp_scope.
Notation "X ≠@{ A } Y":= (¬X =@{ A } Y) (at level 70, no associativity) : stdpp_scope.

168
Hint Extern 0 (_ = _) => reflexivity.
169
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
170

171
Instance:  A, PreOrder (=@{A}).
172
173
174
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
Ralf Jung's avatar
Ralf Jung committed
175
176
177
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
178
Class Equiv A := equiv: relation A.
179
180
181
(* No Hint Mode set because of Coq bug #5735
Hint Mode Equiv ! : typeclass_instances. *)

182
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
183
184
185
Infix "≡@{ A }" := (@equiv A _)
  (at level 70, only parsing, no associativity) : stdpp_scope.

186
187
188
189
190
191
192
Notation "(≡)" := equiv (only parsing) : stdpp_scope.
Notation "( X ≡)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : stdpp_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
193

194
195
196
197
Notation "(≡@{ A } )" := (@equiv A _) (only parsing) : stdpp_scope.
Notation "(≢@{ A } )" := (λ X Y, ¬X @{A} Y) (only parsing) : stdpp_scope.
Notation "X ≢@{ A } Y":= (¬X @{ A } Y) (at level 70, no associativity) : stdpp_scope.

198
199
200
201
202
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
203
204
Hint Mode LeibnizEquiv ! - : typeclass_instances.

205
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@{A})} (x y : A) :
206
207
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
208

209
210
Ltac fold_leibniz := repeat
  match goal with
211
  | H : context [ _ @{?A} _ ] |- _ =>
212
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
213
  | |- context [ _ @{?A} _ ] =>
214
215
216
217
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
218
  | H : context [ _ =@{?A} _ ] |- _ =>
219
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
220
  | |- context [ _ =@{?A} _ ] =>
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
242
propositions. *)
243
Class Decision (P : Prop) := decide : {P} + {¬P}.
244
Hint Mode Decision ! : typeclass_instances.
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A  B  Prop) :=
  decide_rel x y :> Decision (R x y).
Hint Mode RelDecision ! ! ! : typeclass_instances.
Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
265
Notation EqDecision A := (RelDecision (=@{A})).
266
267
268
269

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
270
Hint Mode Inhabited ! : typeclass_instances.
271
Arguments populate {_} _ : assert.
272
273
274
275
276
277

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
278
Hint Mode ProofIrrel ! : typeclass_instances.
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
Arguments irreflexivity {_} _ {_} _ _ : assert.
Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Arguments cancel {_ _ _} _ _ {_} _ : assert.
Arguments surj {_ _ _} _ {_} _ : assert.
Arguments idemp {_ _} _ {_} _ : assert.
Arguments comm {_ _ _} _ {_} _ _ : assert.
Arguments left_id {_ _} _ _ {_} _ : assert.
Arguments right_id {_ _} _ _ {_} _ : assert.
Arguments assoc {_ _} _ {_} _ _ _ : assert.
Arguments left_absorb {_ _} _ _ {_} _ : assert.
Arguments right_absorb {_ _} _ _ {_} _ : assert.
Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Arguments total {_} _ {_} _ _ : assert.
Arguments trichotomy {_} _ {_} _ _ : assert.
Arguments trichotomyT {_} _ {_} _ _ : assert.
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
395
396
397
Notation "(∧)" := and (only parsing) : stdpp_scope.
Notation "( A ∧)" := (and A) (only parsing) : stdpp_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
398

399
400
401
Notation "(∨)" := or (only parsing) : stdpp_scope.
Notation "( A ∨)" := (or A) (only parsing) : stdpp_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
402

403
404
405
Notation "(↔)" := iff (only parsing) : stdpp_scope.
Notation "( A ↔)" := (iff A) (only parsing) : stdpp_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
406
407
408
409
410
411
412
413
414
415
416
417
418
419

Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
420
421
422
423
424
425
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
426

427
Instance: Comm () (=@{A}).
428
Proof. red; intuition. Qed.
429
Instance: Comm () (λ x y, y =@{A} x).
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
469
470
471
Notation "(→)" := (λ A B, A  B) (only parsing) : stdpp_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : stdpp_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
472

473
Notation "t $ r" := (t r)
474
475
476
  (at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : stdpp_scope.
477

478
479
480
481
Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
Notation "( f ∘)" := (compose f) (only parsing) : stdpp_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.
482

Robbert Krebbers's avatar
Robbert Krebbers committed
483
484
485
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

486
487
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
488
489
490
491
Arguments id _ _ / : assert.
Arguments compose _ _ _ _ _ _ / : assert.
Arguments flip _ _ _ _ _ _ / : assert.
Arguments const _ _ _ _ / : assert.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
Typeclasses Transparent id compose flip const.

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Hint Unfold Is_true.
Hint Immediate Is_true_eq_left.
Hint Resolve orb_prop_intro andb_prop_intro.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
549

550
551
552
553
554
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
555

556
557
558
559
560
561
562
563
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
564

565
566
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
567
Instance unit_equivalence : Equivalence (@{unit}).
568
Proof. repeat split. Qed.
569
570
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
571
Instance unit_inhabited: Inhabited unit := populate ().
572

573
(** ** Products *)
574
575
Notation "( x ,)" := (pair x) (only parsing) : stdpp_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
576

577
578
Notation "p .1" := (fst p) (at level 2, left associativity, format "p .1").
Notation "p .2" := (snd p) (at level 2, left associativity, format "p .2").
579

580
Instance: Params (@pair) 2.
581
582
Instance: Params (@fst) 2.
Instance: Params (@snd) 2.
583

584
585
586
587
588
589
590
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

Robbert Krebbers's avatar
Robbert Krebbers committed
591
592
593
594
595
Definition uncurry3 {A B C D} (f : A * B * C  D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Definition uncurry4 {A B C D E} (f : A * B * C * D  E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).

596
597
Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
598
Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
599

600
601
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
602
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
603

604
605
606
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
607

608
609
610
611
612
613
614
615
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
633

634
635
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
636
637
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
638
639
640
641
642
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
643

644
645
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
646
647
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
648
649
650
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
651

Robbert Krebbers's avatar
Robbert Krebbers committed
652
653
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
654

655
(** ** Sums *)
656
657
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
658
Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
659

660
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
661
  match iA with populate x => populate (inl x) end.
662
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
663
  match iB with populate y => populate (inl y) end.
664

665
666
667
668
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
669

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
697
698
699
700
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
701
702
703
704
705
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
706
707
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
708
709
Typeclasses Opaque sum_equiv.

710
711
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
712

713
(** ** Sigma types *)
714
715
716
Arguments existT {_ _} _ _ : assert.
Arguments projT1 {_ _} _ : assert.
Arguments projT2 {_ _} _ : assert.
717

718
719
720
Arguments exist {_} _ _ _ : assert.
Arguments proj1_sig {_ _} _ : assert.
Arguments proj2_sig {_ _} _ : assert.
721
722
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.
723

724
725
726
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
727

728
729
730
731
732
733
734
735
736
737
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
738
Arguments sig_map _ _ _ _ _ _ !_ / : assert.
739

Robbert Krebbers's avatar
Robbert Krebbers committed
740

741
(** * Operations on collections *)
742
(** We define operational type classes for the traditional operations and
743
relations on collections: the empty collection [∅], the union [(∪)],
744
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
745
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
746
Class Empty A := empty: A.
747
Hint Mode Empty ! : typeclass_instances.
748
Notation "∅" := empty : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
749

750
751
Instance empty_inhabited `(Empty A) : Inhabited A := populate .

Robbert Krebbers's avatar
Robbert Krebbers committed
752
Class Union A := union: A  A  A.
753
Hint Mode Union ! : typeclass_instances.
754
Instance: Params (@union) 2.
755
756
757
758
759
760
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
Notation "( x ∪)" := (union x) (only parsing) : stdpp_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : stdpp_scope.
761
Infix "∪**" := (zip_with (zip_with ()))
762
  (at level 50, left associativity) : stdpp_scope.
763
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
764
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
765

766
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
767
Arguments union_list _ _ _ !_ / : assert.
768
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : stdpp_scope.
769

Robbert Krebbers's avatar
Robbert Krebbers committed
770
Class Intersection A := intersection: A  A  A.
771
Hint Mode Intersection ! : typeclass_instances.
772
Instance: Params (@intersection) 2.
773
774
775
776
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
777
778

Class Difference A := difference: A  A  A.
779
Hint Mode Difference ! : typeclass_instances.
780
Instance: Params (@difference) 2.
781
782
783
784
785
786
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
Notation "( x ∖)" := (difference x) (only parsing) : stdpp_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : stdpp_scope.
787
Infix "∖**" := (zip_with (zip_with ()))
788
  (at level 40, left associativity) : stdpp_scope.
789
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
790
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
791

792
Class Singleton A B := singleton: A  B.
793
Hint Mode Singleton - ! : typeclass_instances.
794
Instance: Params (@singleton) 3.
795
Notation "{[ x ]}" := (singleton x) (at level 1) : stdpp_scope.
796
Notation "{[ x ; y ; .. ; z ]}" :=
797
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
798
  (at level 1) : stdpp_scope.
799
Notation "{[ x , y ]}" := (singleton (x,y))
800
  (at level 1, y at next level) : stdpp_scope.
801
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
802
  (at level 1, y at next level, z at next level) : stdpp_scope.
803

804
Class SubsetEq A := subseteq: relation A.
805
Hint Mode SubsetEq ! : typeclass_instances.
806
Instance: Params (@subseteq) 2.
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
Infix "⊆" := subseteq (at level 70) : stdpp_scope.
Notation "(⊆)" := subseteq (only parsing) : stdpp_scope.
Notation "( X ⊆)" := (subseteq X) (only parsing) : stdpp_scope.
Notation "(⊆ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : stdpp_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : stdpp_scope.
Notation "( X ⊈)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(⊈ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Infix "⊆*" := (Forall2 ()) (at level 70) : stdpp_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : stdpp_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : stdpp_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : stdpp_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : stdpp_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : stdpp_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
822

823
Hint Extern 0 (_  _) => reflexivity.
824
825
826
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

827
828
829
830
831
832
833
834
Infix "⊂" := (strict ()) (at level 70) : stdpp_scope.
Notation "(⊂)" := (strict ()) (only parsing) : stdpp_scope.
Notation "( X ⊂)" := (strict () X) (only parsing) : stdpp_scope.
Notation "(⊂ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Notation "X ⊄ Y" := (¬X  Y) (at level 70) : stdpp_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : stdpp_scope.
Notation "( X ⊄)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(⊄ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
835

836
837
838
839
Notation "X ⊆ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊆ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : stdpp_scope.
840

841
842
843
844
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.
845
Hint Mode Lexico ! : typeclass_instances.
846

Robbert Krebbers's avatar
Robbert Krebbers committed
847
Class ElemOf A B := elem_of: A  B  Prop.
848
Hint Mode ElemOf - ! : typeclass_instances.
849
Instance: Params (@elem_of) 3.
850
851
852
853
854
855
856
857
Infix "∈" := elem_of (at level 70) : stdpp_scope.
Notation "(∈)" := elem_of (only parsing) : stdpp_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : stdpp_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : stdpp_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : stdpp_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : stdpp_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : stdpp_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
858

Robbert Krebbers's avatar
Robbert Krebbers committed
859
860
861
Infix "∈@{ B }" := (@elem_of _ B _) (at level 70, only parsing) : stdpp_scope.
Notation "(∈@{ B } )" := (@elem_of _ B _) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
862
Class Disjoint A := disjoint : A  A  Prop.
863
 Hint Mode Disjoint ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
864
Instance: Params (@disjoint) 2.
865
866
867
868
Infix "##" := disjoint (at level 70) : stdpp_scope.
Notation "(##)" := disjoint (only parsing) : stdpp_scope.
Notation "( X ##.)" := (disjoint X) (only parsing) : stdpp_scope.
Notation "(.## X )" := (λ Y, Y ## X) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
869
870
871
872

Infix "##@{ A }" := (@disjoint A _) (at level 70, only parsing) : stdpp_scope.
Notation "(##@{ A } )" := (@disjoint A _) (only parsing) : stdpp_scope.

873
874
875
876
877
878
879
Infix "##*" := (Forall2 (##)) (at level 70) : stdpp_scope.
Notation "(##*)" := (Forall2 (##)) (only parsing) : stdpp_scope.
Infix "##**" := (Forall2 (##*)) (at level 70) : stdpp_scope.
Infix "##1*" := (Forall2 (λ p q, p.1 ## q.1)) (at level 70) : stdpp_scope.
Infix "##2*" := (Forall2 (λ p q, p.2 ## q.2)) (at level 70) : stdpp_scope.
Infix "##1**" := (Forall2 (λ p q, p.1 ##* q.1)) (at level 70) : stdpp_scope.
Infix "##2**" := (Forall2 (λ p q, p.2 ##* q.2)) (at level 70) : stdpp_scope.
880
881
Hint Extern 0 (_ ## _) => symmetry; eassumption.
Hint Extern 0 (_ ##* _) => symmetry; eassumption.
882
883

Class DisjointE E A := disjointE : E  A  A  Prop.
884
Hint Mode DisjointE - ! : typeclass_instances.
885
Instance: Params (@disjointE) 4.
886
Notation "X ##{ Γ } Y" := (disjointE Γ X Y)
887
888
  (at level 70, format "X  ##{ Γ }  Y") : stdpp_scope.
Notation "(##{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : stdpp_scope.
889
Notation "Xs ##{ Γ }* Ys" := (Forall2 (##{Γ}) Xs Ys)
890
  (at level 70, format "Xs  ##{ Γ }*  Ys") : stdpp_scope.
891
Notation "(##{ Γ }* )" := (Forall2 (##{Γ}))
892
  (only parsing, Γ at level 1) : stdpp_scope.
893
Notation "X ##{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
894
  (at level 70, format "X  ##{ Γ1 , Γ2 , .. , Γ3 }  Y") : stdpp_scope.
895
Notation "Xs ##{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
896
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
897
  (at level 70, format "Xs  ##{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : stdpp_scope.
898
Hint Extern 0 (_ ##{_} _) => symmetry; eassumption.
899
900

Class DisjointList A := disjoint_list : list A  Prop.
901
Hint Mode DisjointList ! : typeclass_instances.
902
Instance: Params (@disjoint_list) 2.
903
Notation "## Xs" := (disjoint_list Xs) (at level 20, format "##  Xs") : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
904
905
Notation "##@{ A } Xs" :=
  (@disjoint_list A _ Xs) (at level 20, only parsing) : stdpp_scope.
906

907
908
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
909
910
  Implicit Types X : A.

911
  Inductive disjoint_list_default : DisjointList A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
912
    | disjoint_nil_2 : ##@{