diff --git a/barrier/barrier.v b/barrier/barrier.v index 77ace31129dfbfee86708bc41e4dac4b178c86aa..e7b305102536101872c306ebd433872e2dd581b8 100644 --- a/barrier/barrier.v +++ b/barrier/barrier.v @@ -126,6 +126,9 @@ End barrier_proto. the module into our namespaces. But Coq doesn't seem to support that...?? *) Import barrier_proto. +(* The functors we need. *) +Definition barrierFs := stsF sts `::` agreeF `::` pnil. + (** Now we come to the Iris part of the proof. *) Section proof. Context {Σ : iFunctorG} (N : namespace). diff --git a/barrier/client.v b/barrier/client.v index d6717de0a81643112507ae5bc146dbecc0c8d5c9..8ad1d8f26208f9dcf4dfa363dea863dae509028f 100644 --- a/barrier/client.v +++ b/barrier/client.v @@ -28,8 +28,7 @@ Section client. End client. Section ClosedProofs. - Definition Σ : iFunctorG := agreeF .:: constF (stsRA barrier_proto.sts) .:: heapF - .:: (λ _, constF unitRA) : iFunctorG. + Definition Σ : iFunctorG := heapF .:: barrierFs .++ endF. Notation iProp := (iPropG heap_lang Σ). Lemma client_safe_closed σ : {{ ownP σ : iProp }} client {{ λ v, True }}. diff --git a/prelude/functions.v b/prelude/functions.v index 193c376592d4c3bc3bd042bc7b6bdc2604fd59bf..d0205d343a5772fbad16131c1767b7ddf05b3d1f 100644 --- a/prelude/functions.v +++ b/prelude/functions.v @@ -31,20 +31,41 @@ Section functions. End functions. (** "Cons-ing" of functions from nat to T *) +(* Coq's standard lists are not universe polymorphic. Hence we have to re-define them. Ouch. + TODO: If we decide to end up going with this, we should move this elsewhere. *) +Polymorphic Inductive plist {A : Type} : Type := +| pnil : plist +| pcons: A → plist → plist. +Arguments plist : clear implicits. + +Polymorphic Fixpoint papp {A : Type} (l1 l2 : plist A) : plist A := + match l1 with + | pnil => l2 + | pcons a l => pcons a (papp l l2) + end. + +(* TODO: Notation is totally up for debate. *) +Infix "`::`" := pcons (at level 60, right associativity) : C_scope. +Infix "`++`" := papp (at level 60, right associativity) : C_scope. + Polymorphic Definition fn_cons {T : Type} (t : T) (f: nat → T) : nat → T := λ n, match n with | O => t | S n => f n end. -Polymorphic Definition fn_mcons {T : Type} (ts : list T) (f : nat → T) : nat → T := - fold_right fn_cons f ts. +Polymorphic Fixpoint fn_mcons {T : Type} (ts : plist T) (f : nat → T) : nat → T := + match ts with + | pnil => f + | pcons t ts => fn_cons t (fn_mcons ts f) + end. +(* TODO: Notation is totally up for debate. *) Infix ".::" := fn_cons (at level 60, right associativity) : C_scope. Infix ".++" := fn_mcons (at level 60, right associativity) : C_scope. -Polymorphic Lemma fn_mcons_app {T : Type} (ts1 ts2 : list T) f : - (ts1 ++ ts2) .++ f = ts1 .++ (ts2 .++ f). +Polymorphic Lemma fn_mcons_app {T : Type} (ts1 ts2 : plist T) f : + (ts1 `++` ts2) .++ f = ts1 .++ (ts2 .++ f). Proof. - unfold fn_mcons. rewrite fold_right_app. done. + induction ts1; simpl; eauto. congruence. Qed.