From edfd4f51aebe2e5b15c99eec2168537ed18efb49 Mon Sep 17 00:00:00 2001
From: Robbert Krebbers <mail@robbertkrebbers.nl>
Date: Tue, 16 Feb 2016 01:04:32 +0100
Subject: [PATCH] Rename sts -> stsT.

---
 algebra/sts.v       | 10 +++++-----
 program_logic/sts.v |  6 +++---
 2 files changed, 8 insertions(+), 8 deletions(-)

diff --git a/algebra/sts.v b/algebra/sts.v
index df02052a8..08c080b3c 100644
--- a/algebra/sts.v
+++ b/algebra/sts.v
@@ -7,7 +7,7 @@ Local Arguments unit _ _ !_ /.
 
 Module sts.
 
-Record Sts := {
+Record stsT := STS {
   state : Type;
   token : Type;
   trans : relation state;
@@ -16,14 +16,14 @@ Record Sts := {
 
 (* The type of bounds we can give to the state of an STS. This is the type
    that we equip with an RA structure. *)
-Inductive bound (sts : Sts) :=
+Inductive bound (sts : stsT) :=
   | bound_auth : state sts → set (token sts) → bound sts
   | bound_frag : set (state sts) → set (token sts )→ bound sts.
 Arguments bound_auth {_} _ _.
 Arguments bound_frag {_} _ _.
 
 Section sts_core.
-Context (sts : Sts).
+Context (sts : stsT).
 Infix "≼" := dra_included.
 
 Notation state := (state sts).
@@ -239,7 +239,7 @@ Qed.
 End sts_core.
 
 Section stsRA.
-Context (sts : Sts).
+Context (sts : stsT).
 
 Canonical Structure RA := validityRA (bound sts).
 Definition auth (s : state sts) (T : set (token sts)) : RA :=
@@ -299,7 +299,7 @@ Qed.
 
 Lemma frag_included' S1 S2 T :
   closed sts S2 T → closed sts S1 T →
-  S2 ≡ (S1 ∩ sts.up_set sts S2 ∅) →
+  S2 ≡ S1 ∩ sts.up_set sts S2 ∅ →
   frag S1 T ≼ frag S2 T.
 Proof.
   intros. apply frag_included; first done.
diff --git a/program_logic/sts.v b/program_logic/sts.v
index 3c4d28a9c..4501023b0 100644
--- a/program_logic/sts.v
+++ b/program_logic/sts.v
@@ -12,13 +12,13 @@ Module sts.
     like you would use "auth_ctx" etc. *)
 Export algebra.sts.sts.
 
-Class InG Λ Σ (i : gid) (sts : Sts) := {
+Class InG Λ Σ (i : gid) (sts : stsT) := {
   inG :> ghost_ownership.InG Λ Σ i (sts.RA sts);
   inh :> Inhabited (state sts);
 }.
 
 Section definitions.
-  Context {Λ Σ} (i : gid) (sts : Sts) `{!InG Λ Σ i sts} (γ : gname).
+  Context {Λ Σ} (i : gid) (sts : stsT) `{!InG Λ Σ i sts} (γ : gname).
   Definition inv  (φ : state sts → iPropG Λ Σ) : iPropG Λ Σ :=
     (∃ s, own i γ (auth sts s ∅) ★ φ s)%I.
   Definition in_states (S : set (state sts)) (T: set (token sts)) : iPropG Λ Σ:=
@@ -34,7 +34,7 @@ Instance: Params (@in_state) 6.
 Instance: Params (@ctx) 7.
 
 Section sts.
-  Context {Λ Σ} (i : gid) (sts : Sts) `{!InG Λ Σ StsI sts}.
+  Context {Λ Σ} (i : gid) (sts : stsT) `{!InG Λ Σ StsI sts}.
   Context (φ : state sts → iPropG Λ Σ).
   Implicit Types N : namespace.
   Implicit Types P Q R : iPropG Λ Σ.
-- 
GitLab