diff --git a/iris_core.v b/iris_core.v
index e51560d5167a31603e016ba65c03ddf181f4162e..0864d1233f788800b920a757a007b3cf87e2fc46 100644
--- a/iris_core.v
+++ b/iris_core.v
@@ -73,7 +73,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
   
   (** And now we're ready to build the IRIS-specific connectives! *)
 
-  Implicit Types (P Q : Props) (w : Wld) (n i k : nat) (m : mask) (r : pres) (u v : res) (σ : state).
+  Implicit Types (P Q : Props) (w : Wld) (n i k : nat) (m : mask) (r u v : res) (σ : state).
 
   Section Necessitation.
     (** Note: this could be moved to BI, since it's possible to define
@@ -82,7 +82,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
     Local Obligation Tactic := intros; resp_set || eauto with typeclass_instances.
 
     Program Definition box : Props -n> Props :=
-      n[(fun P => m[(fun w => mkUPred (fun n r => P w n ra_pos_unit) _)])].
+      n[(fun P => m[(fun w => mkUPred (fun n r => P w n 1) _)])].
     Next Obligation.
       intros n m r s HLe _ Hp; rewrite-> HLe; assumption.
     Qed.
@@ -129,11 +129,20 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
     intros w n r; reflexivity.
   Qed.
 
+  Lemma box_dup P :
+    â–¡P == â–¡P * â–¡P.
+  Proof.
+    intros w n r. split.
+    - intros HP. exists 1 r. split; [now rewrite ra_op_unit|].
+      split;  assumption.
+    - intros [r1 [r2 [_ [HP _] ] ] ]. assumption.
+  Qed.
+
   (** "Internal" equality **)
   Section IntEq.
     Context {T} `{mT : metric T}.
 
-    Program Definition intEqP (t1 t2 : T) : UPred pres :=
+    Program Definition intEqP (t1 t2 : T) : UPred res :=
       mkUPred (fun n r => t1 = S n = t2) _.
     Next Obligation.
       intros n1 n2 _ _ HLe _; apply mono_dist; omega.
@@ -211,9 +220,9 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
        Note that this makes ownR trivially *False* for invalid u: There is no
        element v such that u · v = r (where r is valid) *)
     Program Definition ownR: res -=> Props :=
-      s[(fun u => pcmconst (mkUPred(fun n r => u ⊑ ra_proj r) _) )].
+      s[(fun u => pcmconst (mkUPred(fun n r => u ⊑ r) _) )].
     Next Obligation.
-      intros n m r1 r2 Hle [d Hd ] [e He]. change (u ⊑ (ra_proj r2)). rewrite <-Hd, <-He.
+      intros n m r1 r2 Hle [d Hd ] [e He]. change (u ⊑ r2). rewrite <-Hd, <-He.
       exists (d · e). rewrite assoc. reflexivity.
     Qed.
     Next Obligation.
@@ -229,8 +238,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
     Proof.
       intros w n r; split; [intros Hut | intros [r1 [r2 [EQr [Hu Ht] ] ] ] ].
       - destruct Hut as [s Heq]. rewrite-> assoc in Heq.
-        exists↓ (s · u) by auto_valid.
-        exists↓ v by auto_valid.
+        exists (s · u) v.
         split; [|split].
         + rewrite <-Heq. reflexivity.
         + exists s. reflexivity.
@@ -241,13 +249,6 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
         rewrite <-assoc, (comm _ u), assoc. reflexivity.
     Qed.
 
-    Lemma ownR_valid u (INVAL: ~↓u):
-      ownR u ⊑ ⊥.
-    Proof.
-      intros w n [r VAL] [v Heq]. hnf. unfold ra_proj, proj1_sig in Heq.
-      rewrite <-Heq in VAL. apply ra_op_valid2 in VAL. contradiction.
-    Qed.
-
     (** Proper physical state: ownership of the machine state **)
     Program Definition ownS : state -n> Props :=
       n[(fun s => ownR (ex_own _ s, 1))].
@@ -264,7 +265,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       n[(fun r : RL.res => ownR (1, r))].
     Next Obligation.
       intros r1 r2 EQr. destruct n as [| n]; [apply dist_bound |eapply dist_refl].
-      simpl in EQr. intros w m t. simpl. change ( (ex_unit state, r1) ⊑ (ra_proj t) <->  (ex_unit state, r2) ⊑ (ra_proj t)). rewrite EQr. reflexivity.
+      simpl in EQr. intros w m t. simpl. change ( (ex_unit state, r1) ⊑ t <->  (ex_unit state, r2) ⊑ t). rewrite EQr. reflexivity.
     Qed.
 
     Lemma ownL_timeless {r : RL.res} : valid(timeless(ownL r)).
diff --git a/iris_derived_rules.v b/iris_derived_rules.v
index 3d4b04cb8e1c18277f63989d811460bb2931940a..eb9452559fb19f20427c36f6db7f341bf0114bb6 100644
--- a/iris_derived_rules.v
+++ b/iris_derived_rules.v
@@ -15,8 +15,6 @@ Module Type IRIS_DERIVED_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (W
 
   Section DerivedRules.
 
-    Existing Instance LP_isval.
-
     Implicit Types (P : Props) (i : nat) (m : mask) (e : expr) (r : res).
 
     Lemma vsFalse m1 m2 :
diff --git a/iris_ht_rules.v b/iris_ht_rules.v
index 7d5f1e5f4b00a2571d8a8488c91d03986bac923a..203e9d70c28962e72e3c60e4bdbd0bb38d93a131 100644
--- a/iris_ht_rules.v
+++ b/iris_ht_rules.v
@@ -16,7 +16,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
 
     Existing Instance LP_isval.
 
-    Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : pres).
+    Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : res).
 
     (** Ret **)
     Program Definition eqV v : vPred :=
@@ -247,24 +247,20 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
       rewrite <- EQr, <- assoc in HE; edestruct He as [HV [HS [HF HS'] ] ]; try eassumption; [].
       clear He; split; [intros HVal; clear HS HF IH HE | split; [clear HV HF HE | clear HV HS HE; split; [clear HS' | clear HF] ]; intros ].
       - specialize (HV HVal); destruct HV as [w'' [r1' [HSw' [Hφ HE] ] ] ].
-        rewrite ->assoc in HE. exists w''.
-        exists↓ (ra_proj r1' · ra_proj r2).
-        { apply wsat_valid in HE. auto_valid. }
+        rewrite ->assoc in HE. exists w'' (r1' · r2).
         split; [eassumption | split; [| eassumption ] ].
         exists r1' r2; split; [reflexivity | split; [assumption |] ].
         unfold lt in HLt; rewrite ->HLt, <- HSw', <- HSw; apply HLR.
       - edestruct HS as [w'' [r1' [HSw' [He HE] ] ] ]; try eassumption; []; clear HS.
         destruct k as [| k]; [exists w' r1'; split; [reflexivity | split; [apply wpO | exact I] ] |].
-        rewrite ->assoc in HE. exists w''. exists↓ (ra_proj r1' · ra_proj r2).
-        { apply wsat_valid in HE. auto_valid. }
+        rewrite ->assoc in HE. exists w'' (r1' · r2).
         split; [eassumption | split; [| eassumption] ].
         eapply IH; try eassumption; [ reflexivity |].
         unfold lt in HLt; rewrite ->Le.le_n_Sn, HLt, <- HSw', <- HSw; apply HLR.
       - specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [HSw' [HWF [HWR HE] ] ] ] ] ].
         destruct k as [| k]; [exists w' rfk rret; split; [reflexivity | split; [apply wpO | split; [apply wpO | exact I] ] ] |].
-        rewrite ->assoc, <- (assoc (_ rfk)) in HE.
-        exists w''. exists rfk. exists↓ (ra_proj rret · ra_proj r2).
-        { clear- HE. apply wsat_valid in HE. eapply ra_op_valid2, ra_op_valid; try now apply _. eassumption. }
+        rewrite ->assoc, <- (assoc rfk) in HE.
+        exists w''. exists rfk (rret · r2).
         split; [eassumption | split; [| split; eassumption] ].
         eapply IH; try eassumption; [ reflexivity |].
         unfold lt in HLt; rewrite ->Le.le_n_Sn, HLt, <- HSw', <- HSw; apply HLR.
@@ -288,8 +284,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
         edestruct He as [_ [HeS _] ]; try eassumption; [].
         edestruct HeS as [w'' [r1' [HSw' [He' HE'] ] ] ]; try eassumption; [].
         clear HE He HeS; rewrite ->assoc in HE'.
-        exists w''. exists↓ (ra_proj r1' · ra_proj r2).
-        { clear- HE'. apply wsat_valid in HE'. auto_valid. }
+        exists w'' (r1' · r2).
         split; [eassumption | split; [| eassumption] ].
         assert (HNV : ~ is_value ei)
           by (intros HV; eapply (values_stuck _ HV); [symmetry; apply fill_empty | repeat eexists; eassumption]).
@@ -299,12 +294,11 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
         assert (HVal := atomic_step _ _ _ _ HAt HStep).
         clear - He' HVal HLR; rename w'' into w; rewrite ->unfold_wp; intros w'; intros.
         split; [intros HV; clear HVal | split; intros; [exfalso| split; intros; [exfalso |] ] ].
-        + rewrite ->unfold_wp in He'. rewrite ra_proj_cancel in HE. rewrite <-assoc in HE.
+        + rewrite ->unfold_wp in He'. rewrite <-assoc in HE.
           edestruct He' as [HVal _]; try eassumption; [].
           specialize (HVal HV); destruct HVal as [w'' [r1'' [HSw' [Hφ HE'] ] ] ].
           rewrite ->assoc in HE'.
-          exists w''. exists↓ (ra_proj r1'' · ra_proj r2).
-          { clear- HE'. apply wsat_valid in HE'. auto_valid. }
+          exists w'' (r1'' · r2).
           split; [eassumption | split; [| eassumption] ].
           exists r1'' r2; split; [reflexivity | split; [assumption |] ].
           unfold lt in HLt; rewrite <- HLt, HSw, HSw' in HLR; apply HLR.
@@ -315,7 +309,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
         + unfold safeExpr. now auto.
       - subst; eapply fork_not_atomic; eassumption.
       - rewrite <- EQr, <- assoc in HE; rewrite ->unfold_wp in He.
-        specialize (He w' k (ra_proj r2 · rf) mf σ HSw HLt HD0 HE); clear HE.
+        specialize (He w' k (r2 · rf) mf σ HSw HLt HD0 HE); clear HE.
         destruct He as [_ [_ [_ HS'] ] ]; auto.
     Qed.
 
@@ -339,7 +333,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
         rewrite ->fill_empty; rewrite ->unfold_wp; rewrite <- (le_S_n _ _ HLt), HSw in HLR.
         clear - HLR; intros w''; intros; split; [intros | split; intros; [exfalso | split; intros; [exfalso |] ] ].
         + do 2 eexists; split; [reflexivity | split; [| eassumption] ].
-          exists (ra_pos_unit) r2; split; [unfold ra_pos_unit; simpl; now erewrite ra_op_unit by apply _ |].
+          exists 1 r2; split; [simpl; now erewrite ra_op_unit by apply _ |].
           split; [| unfold lt in HLt; rewrite <- HLt, HSw in HLR; apply HLR].
           simpl; reflexivity.
         + eapply values_stuck; [exact fork_ret_is_value | eassumption | repeat eexists; eassumption].
diff --git a/iris_meta.v b/iris_meta.v
index d75aa2f42deb8a5146e714d80a36b30d2a81f834..5f65742ad9913c595981c5b0d2ce1caa1807930e 100644
--- a/iris_meta.v
+++ b/iris_meta.v
@@ -17,7 +17,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
     Local Open Scope list_scope.
 
     (* weakest-pre for a threadpool *)
-    Inductive wptp (safe : bool) (m : mask) (w : Wld) (n : nat) : tpool -> list pres -> list vPred -> Prop :=
+    Inductive wptp (safe : bool) (m : mask) (w : Wld) (n : nat) : tpool -> list res -> list vPred -> Prop :=
     | wp_emp : wptp safe m w n nil nil nil
     | wp_cons e φ r tp rs φs
               (WPE  : wp safe m e φ w n r)
@@ -77,7 +77,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
           [reflexivity | now apply le_n | now apply mask_emp_disjoint | |].
         + eapply wsat_equiv, HE; try reflexivity; [apply mask_emp_union |].
           rewrite !comp_list_app; simpl comp_list; unfold equiv.
-          rewrite ->assoc, (comm (_ r)), <- assoc. reflexivity.       
+          rewrite ->assoc, (comm r), <- assoc. reflexivity.       
         + edestruct HS as [w' [r' [HSW [WPE' HE'] ] ] ];
           [reflexivity | eassumption | clear WPE HS].
           setoid_rewrite HSW. eapply IHn; clear IHn.
@@ -86,7 +86,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
             constructor; [eassumption | eapply wptp_closure, WPTP; [assumption | now auto with arith] ].
           * eapply wsat_equiv, HE'; [now erewrite mask_emp_union| |reflexivity].
             rewrite !comp_list_app; simpl comp_list; unfold equiv.
-            rewrite ->2!assoc, (comm (_ r')). reflexivity.
+            rewrite ->2!assoc, (comm r'). reflexivity.
       }
       (* fork *)
       inversion H; subst; clear H.
@@ -96,7 +96,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
         [reflexivity | now apply le_n | now apply mask_emp_disjoint | |].
       + eapply wsat_equiv, HE; try reflexivity; [apply mask_emp_union |].
         rewrite !comp_list_app; simpl comp_list; unfold equiv.
-        rewrite ->assoc, (comm (_ r)), <- assoc. reflexivity.
+        rewrite ->assoc, (comm r), <- assoc. reflexivity.
       + specialize (HF _ _ eq_refl); destruct HF as [w' [rfk [rret [HSW [WPE' [WPS HE'] ] ] ] ] ]; clear WPE.
         setoid_rewrite HSW. edestruct IHn as [w'' [rs'' [φs'' [HSW'' [HSWTP'' HSE''] ] ] ] ]; first eassumption; first 2 last.
         * exists w'' rs'' ([umconst ⊤] ++ φs''). split; [eassumption|].
@@ -107,16 +107,16 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
           constructor; [|now constructor]. eassumption.
         * eapply wsat_equiv, HE'; try reflexivity; [symmetry; apply mask_emp_union |].
           rewrite comp_list_app. simpl comp_list. rewrite !comp_list_app. simpl comp_list.
-          rewrite (comm (_ rfk)). erewrite ra_op_unit by apply _.
-          rewrite (comm _ (_ rfk)). rewrite ->!assoc. eapply ra_op_proper;[now apply _ | |reflexivity]. unfold equiv.
-          rewrite <-assoc, (comm (_ rret)). rewrite (comm (_ rret)). reflexivity.
+          rewrite (comm rfk). erewrite ra_op_unit by apply _.
+          rewrite (comm _ rfk). rewrite ->!assoc. eapply ra_op_proper;[now apply _ | |reflexivity]. unfold equiv.
+          rewrite <-assoc, (comm rret). rewrite comm. reflexivity.
     Qed.
 
     Lemma adequacy_ht {safe m e P Q n k tp' σ σ' w r}
             (HT  : valid (ht safe m P e Q))
             (HSN : stepn n ([e], σ) (tp', σ'))
             (HP  : P w (n + S k) r)
-            (HE  : wsat σ m (ra_proj r) w @ n + S k) :
+            (HE  : wsat σ m r w @ n + S k) :
       exists w' rs' φs',
         w ⊑ w' /\ wptp safe m w' (S k) tp' rs' (Q :: φs') /\ wsat σ' m (comp_list rs') w' @ S k.
     Proof.
@@ -134,13 +134,12 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
         wptp safe m w' (S k') tp' rs' (Q :: φs') /\ wsat σ' m (comp_list rs') w' @ S k'.
     Proof.
       destruct (steps_stepn _ _ HSN) as [n HSN']. clear HSN.
-      pose↓ r := (ex_own _ σ, 1:RL.res).
-      { unfold ra_valid. simpl. split; [|eapply ra_valid_unit; now apply _]. exact I. }
+      pose (r := (ex_own _ σ, 1:RL.res)).
       edestruct (adequacy_ht (w:=fdEmpty) (k:=k') (r:=r) HT HSN') as [w' [rs' [φs' [HW [HSWTP HWS] ] ] ] ]; clear HT HSN'.
       - exists (ra_unit _); now rewrite ->ra_op_unit by apply _.
-      - hnf. rewrite Plus.plus_comm. exists (fdEmpty (V:=pres)). split.
-        + unfold r, comp_map. simpl. rewrite ra_op_unit2. split; first assumption.
-          reflexivity.
+      - hnf. rewrite Plus.plus_comm. exists (fdEmpty (V:=res)). split.
+        + unfold r, comp_map. simpl. rewrite ra_op_unit2. split; last reflexivity.
+          unfold ra_valid. simpl. split; [|eapply ra_valid_unit; now apply _]. exact I.
         + intros i _; split; [reflexivity |].
           intros _ _ [].
       - do 3 eexists. split; [eassumption|]. assumption.
@@ -192,7 +191,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       - rewrite mask_emp_union.
         eapply wsat_equiv, HWS; try reflexivity.
         rewrite comp_list_app. simpl comp_list.
-        rewrite ->(assoc (comp_list rs1)), ->(comm (comp_list rs1) (ra_proj r)), <-assoc. reflexivity.
+        rewrite ->(assoc (comp_list rs1)), ->(comm (comp_list rs1) r), <-assoc. reflexivity.
       - apply HSafe. reflexivity.
     Qed.
 
@@ -203,7 +202,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
 
     Definition wf_nat_ind := well_founded_induction Wf_nat.lt_wf.
 
-    Implicit Types (P : Props) (i n k : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : pres) (w : Wld) (σ : state).
+    Implicit Types (P : Props) (i n k : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : res) (w : Wld) (σ : state).
 
     Program Definition restrictV (Q : expr -n> Props) : vPred :=
       n[(fun v => Q (` v))].
@@ -288,7 +287,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       have {Hei} Hei: (E ei) w' (S k) rei by propsM Hei.
       have HSw': w' ⊑ w' by reflexivity.
       have HLe: S k <= S k by omega.
-      have H1ei: ra_pos_unit ⊑ rei by apply: unit_min.
+      have H1ei: 1 ⊑ rei by apply: unit_min.
       have HLt': k < S k by omega.
       move: HW; rewrite {1}mask_full_union -{1}(mask_full_union mask_emp) -assoc => HW.
       case: (atomic_dec ei) => HA; last first.
@@ -302,10 +301,8 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
         move: {HD} (mask_emp_disjoint (mask_full ∪ mask_full)) => HD.
         move: {He HSw' HW} (He _ _ _ _ _ HSw' HLt' HD HW) => [w'' [r' [HSw' [Hei' HW] ] ] ].
         move: HW; rewrite assoc=>HW.
-        pose↓ α := (ra_proj r' · ra_proj rK).
-        + by apply wsat_valid in HW; auto_valid.
         have {HSw₀} HSw₀: w₀ ⊑ w'' by transitivity w'.
-        exists w'' α; split; [done| split]; last first.
+        exists w'' (r' · rK); split; [done| split]; last first.
         + by move: HW; rewrite 2! mask_full_union => HW; wsatM HW.
         apply: (IH _ HLt _ _ _ _ HSwâ‚€); last done.
         rewrite fillE; exists r' rK; split; [exact: equivR | split; [by propsM Hei' |] ].
@@ -334,9 +331,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       move: {Hv} (Hv HV) => [w''' [rei' [HSw'' [Hei' HW] ] ] ].
       (* now IH *)
       move: HW; rewrite assoc => HW.
-      pose↓ α := (ra_proj rei' · ra_proj rK).
-      + by apply wsat_valid in HW; auto_valid.
-      exists w''' α. split; first by transitivity w''.
+      exists w''' (rei' · rK). split; first by transitivity w''.
       split; last by rewrite mask_full_union -(mask_full_union mask_emp).
       rewrite/= in Hei'; rewrite fill_empty -Hk' in Hei' * => {Hk'}.
       have {HSw₀} HSw₀ : w₀ ⊑ w''' by transitivity w''; first by transitivity w'.
@@ -351,7 +346,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
 
   Section Lifting.
 
-    Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q R : vPred) (r : pres).
+    Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q R : vPred) (r : res).
 
 
     Program Definition lift_ePred (φ : expr -=> Prop) : expr -n> Props :=
diff --git a/iris_plog.v b/iris_plog.v
index 1f9118f2e0f8e7d7af5dfd26c8c95444ecf7a477..3df7d55d8804d273e73a536cb1c1aec6c3202595 100644
--- a/iris_plog.v
+++ b/iris_plog.v
@@ -17,14 +17,12 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
   Local Open Scope bi_scope.
   Local Open Scope iris_scope.
   
-  Implicit Types (P : Props) (w : Wld) (n i k : nat) (m : mask) (r : pres) (u v : res) (σ : state) (φ : vPred).
-
-
+  Implicit Types (P : Props) (w : Wld) (n i k : nat) (m : mask) (r u v : res) (σ : state) (φ : vPred).
 
   Section Invariants.
 
     (** Invariants **)
-    Definition invP i P w : UPred pres :=
+    Definition invP i P w : UPred res :=
       intEq (w i) (Some (ı' P)) w.
     Program Definition inv i : Props -n> Props :=
       n[(fun P => m[(invP i P)])].
@@ -58,10 +56,10 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
        constructs. Hopefully we can provide a fold that'd work for
        that at some point
      *)
-    Fixpoint comp_list (xs : list pres) : res :=
+    Fixpoint comp_list (xs : list res) : res :=
       match xs with
         | nil => 1
-        | (x :: xs)%list => ra_proj x · comp_list xs
+        | (x :: xs)%list => x · comp_list xs
       end.
 
     Lemma comp_list_app rs1 rs2 :
@@ -71,57 +69,54 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       now rewrite ->IHrs1, assoc.
     Qed.
 
-    Definition cod (m : nat -f> pres) : list pres := List.map snd (findom_t m).
-    Definition comp_map (m : nat -f> pres) : res := comp_list (cod m).
+    Definition cod (m : nat -f> res) : list res := List.map snd (findom_t m).
+    Definition comp_map (m : nat -f> res) : res := comp_list (cod m).
 
-    Lemma comp_map_remove (rs : nat -f> pres) i r (HLu : rs i == Some r) :
-      comp_map rs == ra_proj r · comp_map (fdRemove i rs).
+    Lemma comp_map_remove (rs : nat -f> res) i r (HLu : rs i == Some r) :
+      comp_map rs == r · comp_map (fdRemove i rs).
     Proof.
       destruct rs as [rs rsP]; unfold comp_map, cod, findom_f in *; simpl findom_t in *.
       induction rs as [| [j s] ]; [contradiction |]; simpl comp_list; simpl in HLu.
-      destruct (comp i j); [do 5 red in HLu; rewrite-> HLu; reflexivity | contradiction |].
+      destruct (comp i j); [red in HLu; rewrite-> HLu; reflexivity | contradiction |].
       simpl comp_list; rewrite ->IHrs by eauto using SS_tail.
-      rewrite-> !assoc, (comm (_ s)); reflexivity.
+      rewrite-> !assoc, (comm s). reflexivity.
     Qed.
 
-    Lemma comp_map_insert_new (rs : nat -f> pres) i r (HNLu : rs i == None) :
-      ra_proj r · comp_map rs == comp_map (fdUpdate i r rs).
+    Lemma comp_map_insert_new (rs : nat -f> res) i r (HNLu : rs i == None) :
+      r · comp_map rs == comp_map (fdUpdate i r rs).
     Proof.
       destruct rs as [rs rsP]; unfold comp_map, cod, findom_f in *; simpl findom_t in *.
       induction rs as [| [j s] ]; [reflexivity | simpl comp_list; simpl in HNLu].
       destruct (comp i j); [contradiction | reflexivity |].
       simpl comp_list; rewrite <- IHrs by eauto using SS_tail.
-      rewrite-> !assoc, (comm (_ r)); reflexivity.
+      rewrite-> !assoc, (comm r); reflexivity.
     Qed.
 
-    Lemma comp_map_insert_old (rs : nat -f> pres) i r1 r2 r
-          (HLu : rs i == Some r1) (HEq : ra_proj r1 · ra_proj r2 == ra_proj r) :
-      ra_proj r2 · comp_map rs == comp_map (fdUpdate i r rs).
+    Lemma comp_map_insert_old (rs : nat -f> res) i r1 r2 r
+          (HLu : rs i == Some r1) (HEq : r1 · r2 == r):
+      r2 · comp_map rs == comp_map (fdUpdate i r rs).
     Proof.
       destruct rs as [rs rsP]; unfold comp_map, cod, findom_f in *; simpl findom_t in *.
       induction rs as [| [j s] ]; [contradiction |]; simpl comp_list; simpl in HLu.
-      destruct (comp i j); [do 5 red in HLu; rewrite-> HLu; clear HLu | contradiction |].
-      - simpl comp_list; rewrite ->assoc, (comm (_ r2)), <- HEq; reflexivity.
+      destruct (comp i j); [red in HLu; rewrite-> HLu; clear HLu | contradiction |].
+      - simpl comp_list; rewrite ->assoc, (comm r2), <- HEq; reflexivity.
       - simpl comp_list; rewrite <- IHrs by eauto using SS_tail.
-        rewrite-> !assoc, (comm (_ r2)); reflexivity.
+        rewrite-> !assoc, (comm r2); reflexivity.
     Qed.
 
-    Definition state_sat (r: res) σ: Prop := ↓r /\
-      match fst r with
-        | ex_own s => s = σ
-        | _ => True
-      end.
+    (* When is a resource okay with a state? *)
+    Definition res_sat (r: res) σ: Prop := ↓r /\ fst r == ex_own state σ.
 
-    Global Instance state_sat_dist : Proper (equiv ==> equiv ==> iff) state_sat.
+    Global Instance res_sat_dist : Proper (equiv ==> equiv ==> iff) res_sat.
     Proof.
-      intros [ [s1| |] r1] [ [s2| |] r2] [EQs EQr] σ1 σ2 EQσ; unfold state_sat; simpl in *; try tauto; try rewrite !EQs; try rewrite !EQr; try rewrite !EQσ; reflexivity.
+      intros [ [s1| |] r1] [ [s2| |] r2] [EQs EQr] σ1 σ2 EQσ; unfold res_sat; simpl in *; try tauto; try rewrite !EQs; try rewrite !EQr; try rewrite !EQσ; reflexivity.
     Qed.
 
     Global Instance preo_unit : preoType () := disc_preo ().
 
     Program Definition wsat σ m (r : res) w : UPred () :=
-      â–¹ (mkUPred (fun n _ => exists rs : nat -f> pres,
-                    state_sat (r · (comp_map rs)) σ
+      â–¹ (mkUPred (fun n _ => exists rs : nat -f> res,
+                    res_sat (r · (comp_map rs)) σ
                       /\ forall i (Hm : m i),
                            (i ∈ dom rs <-> i ∈ dom w) /\
                            forall π ri (HLw : w i == Some π) (HLrs : rs i == Some ri),
@@ -201,10 +196,10 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
   Section ViewShifts.
     Local Obligation Tactic := intros.
 
-    Program Definition preVS m1 m2 P w : UPred pres :=
+    Program Definition preVS m1 m2 P w : UPred res :=
       mkUPred (fun n r => forall w1 (rf: res) mf σ k (HSub : w ⊑ w1) (HLe : k < n)
                                  (HD : mf # m1 ∪ m2)
-                                 (HE : wsat σ (m1 ∪ mf) (ra_proj r · rf) w1 @ S k),
+                                 (HE : wsat σ (m1 ∪ mf) (r · rf) w1 @ S k),
                           exists w2 r',
                             w1 ⊑ w2 /\ P w2 (S k) r'
                             /\ wsat σ (m2 ∪ mf) (r' · rf) w2 @ S k) _.
@@ -213,10 +208,9 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       destruct (HP w1 (rd · rf) mf σ k) as [w2 [r1' [HW [HP' HE'] ] ] ];
         try assumption; [now eauto with arith | |].
       - eapply wsat_equiv, HE; try reflexivity.
-        rewrite ->assoc, (comm (_ r1)), HR; reflexivity.
-      - rewrite ->assoc, (comm (_ r1')) in HE'.
-        exists w2. exists↓ (rd · ra_proj r1').
-        { apply wsat_valid in HE'. auto_valid. }
+        rewrite ->assoc, (comm r1), HR; reflexivity.
+      - rewrite ->assoc, (comm r1') in HE'.
+        exists w2 (rd · r1').
         split; [assumption | split; [| assumption] ].
         eapply uni_pred, HP'; [reflexivity|]. exists rd. reflexivity.
     Qed.
@@ -280,19 +274,19 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
 
     Definition wpFP safe m (WP : expr -n> vPred -n> Props) e φ w n r :=
       forall w' k rf mf σ (HSw : w ⊑ w') (HLt : k < n) (HD : mf # m)
-             (HE : wsat σ (m ∪ mf) (ra_proj r · rf) w' @ S k),
+             (HE : wsat σ (m ∪ mf) (r · rf) w' @ S k),
         (forall (HV : is_value e),
          exists w'' r', w' ⊑ w'' /\ φ (exist _ e HV) w'' (S k) r'
-                           /\ wsat σ (m ∪ mf) (ra_proj r' · rf) w'' @ S k) /\
+                           /\ wsat σ (m ∪ mf) (r' · rf) w'' @ S k) /\
         (forall σ' ei ei' K (HDec : e = K [[ ei ]])
                 (HStep : prim_step (ei, σ) (ei', σ')),
          exists w'' r', w' ⊑ w'' /\ WP (K [[ ei' ]]) φ w'' k r'
-                           /\ wsat σ' (m ∪ mf) (ra_proj r' · rf) w'' @ k) /\
+                           /\ wsat σ' (m ∪ mf) (r' · rf) w'' @ k) /\
         (forall e' K (HDec : e = K [[ fork e' ]]),
          exists w'' rfk rret, w' ⊑ w''
                                  /\ WP (K [[ fork_ret ]]) φ w'' k rret
                                  /\ WP e' (umconst ⊤) w'' k rfk
-                                 /\ wsat σ (m ∪ mf) (ra_proj rfk · ra_proj rret · rf) w'' @ k) /\
+                                 /\ wsat σ (m ∪ mf) (rfk · rret · rf) w'' @ k) /\
         (forall HSafe : safe = true, safeExpr e σ).
 
     (* Define the function wp will be a fixed-point of *)
@@ -305,27 +299,23 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_
       [| omega | ..]; try assumption; [].      
       split; [clear HS HF | split; [clear HV HF | split; clear HV HS; [| clear HF ] ] ]; intros.
       - specialize (HV HV0); destruct HV as [w'' [r1' [HSw' [Hφ HE'] ] ] ].
-        rewrite ->assoc, (comm (_ r1')) in HE'.
-        exists w''. exists↓ (rd · ra_proj r1').
-        { clear -HE'. apply wsat_valid in HE'. auto_valid. }
+        rewrite ->assoc, (comm r1') in HE'.
+        exists w'' (rd · r1').
         split; [assumption | split; [| assumption] ].
         eapply uni_pred, Hφ; [| exists rd]; reflexivity.
       - specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r1' [HSw' [HWP HE'] ] ] ].
-        rewrite ->assoc, (comm (_ r1')) in HE'. exists w''.
+        rewrite ->assoc, (comm r1') in HE'. exists w''.
         destruct k as [| k]; [exists r1'; simpl wsat; tauto |].
-        exists↓ (rd · ra_proj r1').
-        { clear- HE'. apply wsat_valid in HE'. auto_valid. }
+        exists (rd · r1').
         split; [assumption | split; [| assumption] ].
         eapply uni_pred, HWP; [| exists rd]; reflexivity.
       - specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret1 [HSw' [HWR [HWF HE'] ] ] ] ] ].
         destruct k as [| k]; [exists w'' rfk rret1; simpl wsat; tauto |].
-        rewrite ->assoc, <- (assoc (_ rfk)) in HE'.
-        exists w''. exists rfk. exists↓ (rd · ra_proj rret1).
-        { clear- HE'. apply wsat_valid in HE'. rewrite comm. eapply ra_op_valid, ra_op_valid; try now apply _.
-          rewrite ->(comm (_ rfk)) in HE'. eassumption. }
+        rewrite ->assoc, <- (assoc rfk) in HE'.
+        exists w''. exists rfk (rd · rret1).
         repeat (split; try assumption).
         + eapply uni_pred, HWR; [| exists rd]; reflexivity.
-        + clear -HE'. unfold ra_proj. rewrite ->(comm _ rd) in HE'. exact HE'.
+        + clear -HE'. rewrite ->(comm _ rd) in HE'. exact HE'.
       - auto.
     Qed.
     Next Obligation.
diff --git a/iris_vs_rules.v b/iris_vs_rules.v
index 5b905802b583ae68295efbeed8b366afe33df548..31b32531f20e507ef2a0a5e4f823ecee8c0451b6 100644
--- a/iris_vs_rules.v
+++ b/iris_vs_rules.v
@@ -11,7 +11,7 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
   Local Open Scope bi_scope.
   Local Open Scope iris_scope.
 
-  Implicit Types (P Q R : Props) (w : Wld) (n i k : nat) (m : mask) (r : pres) (σ : state).
+  Implicit Types (P Q R : Props) (w : Wld) (n i k : nat) (m : mask) (r : res) (σ : state).
 
   Section ViewShiftProps.
 
@@ -38,14 +38,13 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
       destruct HE as [rs [HE HM] ].
       destruct (rs i) as [ri |] eqn: HLr.
       - rewrite ->comp_map_remove with (i := i) (r := ri) in HE by now eapply equivR.
-        rewrite ->assoc, <- (assoc (_ r)), (comm rf), assoc in HE.
-        exists w'.
-        exists↓ (ra_proj r · ra_proj ri). { destruct HE as [HE _]. eapply ra_op_valid, ra_op_valid; eauto with typeclass_instances. }
+        rewrite ->assoc, <- (assoc r), (comm rf), assoc in HE.
+        exists w' (r · ri).
         split; [reflexivity |].
         split.
         + simpl; eapply HInv; [now auto with arith |].
           eapply uni_pred, HM with i;
-            [| exists (ra_proj r) | | | rewrite HLr]; try reflexivity; [reflexivity| |].
+            [| exists r | | | rewrite HLr]; try reflexivity.
           * left; unfold mask_sing, mask_set.
             destruct (Peano_dec.eq_nat_dec i i); tauto.
           * specialize (HSub i); rewrite HLu in HSub.
@@ -72,17 +71,10 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
       (* get rid of the invisible 1/2 *)
       do 8 red in HInv.
       destruct HE as [rs [HE HM] ].
-      exists w' ra_pos_unit; split; [reflexivity | split; [exact I |] ].
-      rewrite ->(comm (_ r)), <-assoc in HE.
-      remember (match rs i with Some ri => ri | None => ra_pos_unit end) as ri eqn: EQri.
-      pose↓ rri := (ra_proj ri · ra_proj r).
-      { destruct (rs i) as [rsi |] eqn: EQrsi; subst;
-        [| simpl; rewrite ->ra_op_unit by apply _; now apply ra_pos_valid].
-        clear - HE EQrsi. destruct HE as [HE _].
-        rewrite ->comp_map_remove with (i:=i) in HE by (eapply equivR; eassumption).
-        rewrite ->(assoc (_ r)), (comm (_ r)), comm, assoc, <-(assoc (_ rsi) _), (comm _ (ra_proj r)), assoc in HE.
-        eapply ra_op_valid, ra_op_valid; now eauto with typeclass_instances.
-      }
+      exists w' 1; split; [reflexivity | split; [exact I |] ].
+      rewrite ->(comm r), <-assoc in HE.
+      remember (match rs i with Some ri => ri | None => 1 end) as ri eqn: EQri.
+      pose (rri := (ri · r)).
       exists (fdUpdate i rri rs); split; [| intros j Hm].
       - simpl. erewrite ra_op_unit by apply _.
         clear - HE EQri. destruct (rs i) as [rsi |] eqn: EQrsi.
@@ -102,11 +94,8 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
         apply HInv; [now auto with arith |].
         eapply uni_pred, HP; [now auto with arith |].
         rewrite <-HLrs. clear dependent ri0.
-        exists (ra_proj ri · ra_proj r1).
-        subst rri.
-        (* Coq, are you serious?!?? *)
-        change (ra_proj ri · ra_proj r1 · ra_proj r2 == (ra_proj ri · ra_proj r)).
-        rewrite <-HR, assoc. reflexivity.
+        exists (ri · r1).
+        subst rri. rewrite <-HR, assoc. reflexivity.
     Qed.
 
     Lemma vsTrans P Q R m1 m2 m3 (HMS : m2 ⊆ m1 ∪ m3) :
@@ -134,7 +123,7 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
       intros w' n r1 Himp w HSub; rewrite ->HSub in Himp; clear w' HSub.
       intros np rp HLe HS Hp w1; intros.
       exists w1 rp; split; [reflexivity | split; [| assumption ] ].
-      eapply Himp; [assumption | now eauto with arith | now apply ord_res_pres, unit_min | ].
+      eapply Himp; [assumption | now eauto with arith | now apply unit_min | ].
       unfold lt in HLe0; rewrite ->HLe0, <- HSub; assumption.
     Qed.
 
@@ -143,8 +132,8 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
     Proof.
       intros w' n r1 HVS w HSub; specialize (HVS _ HSub); clear w' r1 HSub.
       intros np rpr HLe _ [rp [rr [HR [Hp Hr] ] ] ] w'; intros.
-      assert (HS : ra_unit _ ⊑ ra_proj rp) by (eapply unit_min).
-      specialize (HVS _ _ HLe HS Hp w' (ra_proj rr · rf) (mf ∪ mf0) σ k); clear HS.
+      assert (HS : ra_unit _ ⊑ rp) by (eapply unit_min).
+      specialize (HVS _ _ HLe HS Hp w' (rr · rf) (mf ∪ mf0) σ k); clear HS.
       destruct HVS as [w'' [rq [HSub' [Hq HEq] ] ] ]; try assumption; [| |].
       - (* disjointness of masks: possible lemma *)
         clear - HD HDisj; intros i [ [Hmf | Hmf] Hm12]; [eapply HDisj; now eauto |].
@@ -152,8 +141,7 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
       - rewrite ->assoc, HR; eapply wsat_equiv, HE; try reflexivity; [].
         clear; intros i; unfold mcup; tauto.
       - rewrite ->assoc in HEq.
-        exists w''. exists↓ (ra_proj rq · ra_proj rr).
-        { apply wsat_valid in HEq. auto_valid. }
+        exists w'' (rq · rr).
         split; [assumption | split].
         + unfold lt in HLe0; rewrite ->HSub, HSub', <- HLe0 in Hr; exists rq rr.
           split; now auto.
@@ -174,18 +162,14 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
           (HU : forall rf (HD : ↓(rl · rf)), exists sl, P sl /\ ↓(sl · rf)) :
       valid (vs m m (ownL rl) (xist (ownLP P))).
     Proof.
-      unfold ownLP; intros _ _ _ w _ n [ [rp' rl'] Hrval] _ _ HG w'; intros.
-      destruct HE as [rs [ Hsat HE] ]. rewrite <-assoc in Hsat. simpl in Hsat. destruct Hsat as [Hval Hst].
+      unfold ownLP; intros _ _ _ w _ n [rp' rl'] _ _ HG w'; intros.
+      destruct HE as [rs [ Hsat HE] ]. rewrite <-assoc in Hsat. destruct Hsat as [Hval Hst].
       destruct HG as [ [rdp rdl] [_ EQrl] ]. simpl in EQrl. clear rdp.
       destruct (HU (rdl · snd(rf · comp_map rs))) as [rsl [HPrsl HCrsl] ].
       - clear - Hval EQrl. eapply ra_prod_valid in Hval. destruct Hval as [_ Hsnd].
         rewrite ->assoc, (comm rl), EQrl.
         rewrite ra_op_prod_snd in Hsnd. exact Hsnd.
-      - exists w'. exists↓ (rp', rsl).
-        { clear - Hval HCrsl.
-          apply ra_prod_valid. split; [|auto_valid].
-          eapply ra_prod_valid in Hval. destruct Hval as [Hfst _].
-          rewrite ra_op_prod_fst in Hfst. auto_valid. }
+      - exists w' (rp', rsl).
         split; first reflexivity. split.
         + exists (exist _ rsl HPrsl). simpl.
           exists (rp', 1:RL.res). simpl.
@@ -239,10 +223,10 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
       { intros j; destruct (Peano_dec.eq_nat_dec i j); [subst j; rewrite HLi; exact I|].
         now rewrite ->fdUpdate_neq by assumption.
       }
-      exists (fdUpdate i (ı' P) w) (ra_pos_unit); split; [assumption | split].
+      exists (fdUpdate i (ı' P) w) 1; split; [assumption | split].
       - exists (exist _ i Hm). do 22 red.
         unfold proj1_sig. rewrite fdUpdate_eq; reflexivity.
-      - unfold ra_pos_unit, proj1_sig. erewrite ra_op_unit by apply _.
+      - erewrite ra_op_unit by apply _.
         destruct HE as [rs [HE HM] ].
         exists (fdUpdate i r rs).
         assert (HRi : rs i = None).
@@ -264,6 +248,18 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO
           apply HM; assumption.
     Qed.
 
+    Lemma vsNotOwnInvalid m1 m2 r
+      (Hnval: ~↓r):
+      valid (vs m1 m2 (ownR r) ⊥).
+    Proof.
+      intros pw n s w _. clear pw s.
+      intros m s _ _. clear n.
+      intros [rs Heq] w' rf mf σ k _ _ _ [ ri [ [ Hval _ ] ] ].
+      exfalso.
+      apply Hnval. rewrite <-Heq in Hval.
+      eapply ra_op_valid2, ra_op_valid, ra_op_valid; last eassumption; now apply _.
+    Qed.
+
   End ViewShiftProps.
 
 End IRIS_VS_RULES.
diff --git a/lib/ModuRes/BI.v b/lib/ModuRes/BI.v
index 8c97a665e45c9e4391407db55c05c5d5576644ac..87d1927bebdd6551de14676d9272c585c45e0e87 100644
--- a/lib/ModuRes/BI.v
+++ b/lib/ModuRes/BI.v
@@ -156,26 +156,24 @@ Section UPredBI.
   Local Open Scope ra_scope.
   Local Obligation Tactic := intros; eauto with typeclass_instances.
 
-  Let pres := ⁺res.
-
   (* Standard interpretations of propositional connectives. *)
-  Global Program Instance top_up : topBI (UPred pres) := up_cr (const True).
-  Global Program Instance bot_up : botBI (UPred pres) := up_cr (const False).
+  Global Program Instance top_up : topBI (UPred res) := up_cr (const True).
+  Global Program Instance bot_up : botBI (UPred res) := up_cr (const False).
 
-  Global Program Instance and_up : andBI (UPred pres) :=
+  Global Program Instance and_up : andBI (UPred res) :=
     fun P Q =>
       mkUPred (fun n r => P n r /\ Q n r) _.
   Next Obligation.
     intros n m r1 r2 HLe HSub; rewrite HSub, HLe; tauto.
   Qed.
-  Global Program Instance or_up : orBI (UPred pres) :=
+  Global Program Instance or_up : orBI (UPred res) :=
     fun P Q =>
       mkUPred (fun n r => P n r \/ Q n r) _.
   Next Obligation.
     intros n m r1 r2 HLe HSub; rewrite HSub, HLe; tauto.
   Qed.
 
-  Global Program Instance impl_up : implBI (UPred pres) :=
+  Global Program Instance impl_up : implBI (UPred res) :=
     fun P Q =>
       mkUPred (fun n r => forall m r', m <= n -> r ⊑ r' -> P m r' -> Q m r') _.
   Next Obligation.
@@ -184,13 +182,13 @@ Section UPredBI.
   Qed.
   
   (* BI connectives. *)
-  Global Program Instance sc_up : scBI (UPred pres) :=
+  Global Program Instance sc_up : scBI (UPred res) :=
     fun P Q =>
-      mkUPred (fun n r => exists r1 r2, ra_proj r1 · ra_proj r2 == ra_proj r /\ P n r1 /\ Q n r2) _.
+      mkUPred (fun n r => exists r1 r2, r1 · r2 == r /\ P n r1 /\ Q n r2) _.
   Next Obligation.
     intros n m r1 r2 HLe [rd HEq] [r11 [r12 [HEq' [HP HQ]]]].
     rewrite <- HEq', assoc in HEq; setoid_rewrite HLe.
-    exists↓ (rd · ra_proj r11) by auto_valid.
+    exists (rd · r11).
     exists r12.
     split; [|split;[|assumption] ].
     - simpl. assumption.
@@ -198,27 +196,27 @@ Section UPredBI.
       exists rd. reflexivity.
   Qed.
 
-  Global Program Instance si_up : siBI (UPred pres) :=
+  Global Program Instance si_up : siBI (UPred res) :=
     fun P Q =>
-      mkUPred (fun n r => forall m r' rr, ra_proj r · ra_proj r' == ra_proj rr -> m <= n -> P m r' -> Q m rr) _.
+      mkUPred (fun n r => forall m r' rr, r · r' == rr -> m <= n -> P m r' -> Q m rr) _.
   Next Obligation.
     intros n m r1 r2 HLe [r12 HEq] HSI k r rr HEq' HSub HP.
     rewrite comm in HEq; rewrite <- HEq, <- assoc in HEq'.
-    pose↓ rc := (r12 · ra_proj r) by auto_valid.
+    pose (rc := (r12 · r)).
     eapply HSI with (r':=rc); [| etransitivity; eassumption |].
     - simpl. assumption. 
     - eapply uni_pred, HP; [reflexivity|]. exists r12. reflexivity.
   Qed.
 
   (* Quantifiers. *)
-  Global Program Instance all_up : allBI (UPred pres) :=
+  Global Program Instance all_up : allBI (UPred res) :=
     fun T eqT mT cmT R =>
       mkUPred (fun n r => forall t, R t n r) _.
   Next Obligation.
     intros n m r1 r2 HLe HSub HR t; rewrite HLe, <- HSub; apply HR.
   Qed.
 
-  Global Program Instance xist_up : xistBI (UPred pres) :=
+  Global Program Instance xist_up : xistBI (UPred res) :=
     fun T eqT mT cmT R =>
       mkUPred (fun n r => exists t, R t n r) _.
   Next Obligation.
@@ -315,23 +313,23 @@ Section UPredBI.
 
     Existing Instance nonexp_type.
 
-    Global Instance all_up_equiv : Proper (equiv (A := V -n> UPred pres) ==> equiv) all.
+    Global Instance all_up_equiv : Proper (equiv (A := V -n> UPred res) ==> equiv) all.
     Proof.
       intros R1 R2 EQR n r; simpl.
       setoid_rewrite EQR; tauto.
     Qed.
-    Global Instance all_up_dist n : Proper (dist (T := V -n> UPred pres) n ==> dist n) all.
+    Global Instance all_up_dist n : Proper (dist (T := V -n> UPred res) n ==> dist n) all.
     Proof.
       intros R1 R2 EQR m r HLt; simpl.
       split; intros; apply EQR; now auto.
     Qed.
 
-    Global Instance xist_up_equiv : Proper (equiv (A := V -n> UPred pres) ==> equiv) xist.
+    Global Instance xist_up_equiv : Proper (equiv (A := V -n> UPred res) ==> equiv) xist.
     Proof.
       intros R1 R2 EQR n r; simpl.
       setoid_rewrite EQR; tauto.
     Qed.
-    Global Instance xist_up_dist n : Proper (dist (T := V -n> UPred pres)n ==> dist n) xist.
+    Global Instance xist_up_dist n : Proper (dist (T := V -n> UPred res)n ==> dist n) xist.
     Proof.
       intros R1 R2 EQR m r HLt; simpl.
       split; intros [t HR]; exists t; apply EQR; now auto.
@@ -339,7 +337,7 @@ Section UPredBI.
 
   End Quantifiers.
 
-  Global Program Instance bi_up : ComplBI (UPred pres).
+  Global Program Instance bi_up : ComplBI (UPred res).
   Next Obligation.
     intros n r _; exact I.
   Qed.
@@ -371,29 +369,27 @@ Section UPredBI.
   Qed.
   Next Obligation.
     intros P Q n r; simpl.
-    setoid_rewrite (comm (Commutative := ra_op_comm _)) at 1.
-    firstorder.
+    split; intros [r1 [r2 HPQ]]; exists r2 r1; rewrite comm; tauto.
   Qed.
   Next Obligation.
     intros P Q R n r; split.
     - intros [r1 [rr [EQr [HP [r2 [r3 [EQrr [HQ HR]]]]]]]].
       rewrite <- EQrr, assoc in EQr. unfold sc.
-      exists↓ (ra_proj r1 · ra_proj r2) by auto_valid.
+      exists (r1 · r2).
       exists r3; split; [assumption | split; [| assumption] ].
       exists r1 r2; split; [reflexivity | split; assumption].
     - intros [rr [r3 [EQr [[r1 [r2 [EQrr [HP HQ]]]] HR]]]].
       rewrite <- EQrr, <- assoc in EQr; clear EQrr.
       exists r1.
-      exists↓ (ra_proj r2 · ra_proj r3) by auto_valid.
+      exists (r2 · r3).
       split; [assumption | split; [assumption |] ].
       exists r2 r3; split; [reflexivity | split; assumption].
   Qed.
   Next Obligation.
     intros n r; split.
     - intros [r1 [r2 [EQr [_ HP]]]].
-      eapply uni_pred, HP; [reflexivity|]. exists (ra_proj r1). assumption.
-    - intros HP. exists (ra_pos_unit (T:=res)) r. split;
-      [simpl; erewrite ra_op_unit by apply _; reflexivity |].
+      eapply uni_pred, HP; [reflexivity|]. exists (r1). assumption.
+    - intros HP. exists (ra_unit res) r. split; [simpl; erewrite ra_op_unit by apply _; reflexivity |].
       simpl; unfold const; tauto.
   Qed.
   Next Obligation.
diff --git a/lib/ModuRes/RA.v b/lib/ModuRes/RA.v
index 695fe2139e6aaea467aba5a4950cd7a37f0808b4..6a848f2801967fa40cf4aef83a1c77b297c50a9b 100644
--- a/lib/ModuRes/RA.v
+++ b/lib/ModuRes/RA.v
@@ -1,4 +1,4 @@
-(** Resource algebras: Commutative monoids with a decidable validity predicate. *)
+(** Resource algebras: Commutative monoids with a validity predicate. *)
 
 Require Import Bool.
 Require Import Predom.
@@ -120,105 +120,9 @@ Section ProductLemmas.
 
 End ProductLemmas.
 
-Section PositiveCarrier.
-  Context {T} `{raT : RA T}.
-
-  Definition ra_pos: Type := { t : T | ↓ t }.
-  Coercion ra_proj (r:ra_pos): T := proj1_sig r.
-
-  Implicit Types (t u : T) (r : ra_pos).
-
-  Global Instance ra_pos_type : Setoid ra_pos := _.
-
-  Definition ra_mk_pos t {VAL: ↓ t}: ra_pos := exist _ t VAL.
-
-  Program Definition ra_pos_unit: ra_pos := exist _ 1 _.
-  Next Obligation.
-    now eapply ra_valid_unit; apply _.
-  Qed.
-
-  Lemma ra_proj_cancel t (VAL: ↓t):
-    ra_proj (ra_mk_pos t (VAL:=VAL)) = t.
-  Proof.
-    reflexivity.
-  Qed.
-
-  Lemma ra_op_pos_valid t1 t2 r:
-    t1 · t2 == ra_proj r -> ↓ t1.
-  Proof.
-    destruct r as [t Hval]; simpl. intros Heq. rewrite <-Heq in Hval.
-    eapply ra_op_valid; eassumption.
-  Qed.
-
-  Lemma ra_op_pos_valid2 t1 t2 r:
-    t1 · t2 == ra_proj r -> ↓ t2.
-  Proof.
-    rewrite comm. now eapply ra_op_pos_valid.
-  Qed.
-
-  Lemma ra_pos_valid r:
-    ↓(ra_proj r).
-  Proof.
-    destruct r as [r VAL].
-    exact VAL.
-  Qed.
-
-End PositiveCarrier.
-Global Arguments ra_pos T {_}.
-Notation "'⁺' T" := (ra_pos T) (at level 75) : type_scope.
-
-(** Validity automation tactics *)
-Ltac auto_valid_inner :=
-  solve [ eapply ra_op_pos_valid; (eassumption || rewrite comm; eassumption)
-        | eapply ra_op_pos_valid2; (eassumption || rewrite comm; eassumption)
-        | eapply ra_op_valid; (eassumption || rewrite comm; eassumption) ].
-Ltac auto_valid := idtac; match goal with
-                     | |- @ra_valid ?T _ _ =>
-                       let H := fresh in assert (H : RA T) by apply _; auto_valid_inner
-                   end.
-
-(* FIXME put the common parts into a helper tactic, and allow arbitrary tactics after "by" *)
-Ltac exists_valid t tac := let H := fresh "Hval" in assert(H:(↓t)%ra); [tac|exists (ra_mk_pos t (VAL:=H) ) ].
-Tactic Notation "exists↓" constr(t) := exists_valid t idtac.
-Tactic Notation "exists↓" constr(t) "by" tactic(tac) := exists_valid t ltac:(now tac).
-
-Ltac pose_valid name t tac := let H := fresh "Hval" in assert(H:(↓t)%ra); [tac|pose (name := ra_mk_pos t (VAL:=H) ) ].
-Tactic Notation "pose↓" ident(name) ":=" constr(t) := pose_valid name t idtac.
-Tactic Notation "pose↓" ident(name) ":=" constr(t) "by" tactic(tac) := pose_valid name t ltac:(now tac).
-
-
 Section Order.
   Context T `{raT : RA T}.
 
-  Implicit Types (t : T) (r s : ra_pos T).
-
-  Definition pra_ord r1 r2 :=
-    exists t, t · (ra_proj r1) == (ra_proj r2).
-
-  Global Instance pra_ord_preo: PreOrder pra_ord.
-  Proof.
-    split.
-    - intros x; exists 1. simpl. erewrite ra_op_unit by apply _; reflexivity.
-    - intros z yz xyz [y Hyz] [x Hxyz]; unfold pra_ord.
-      rewrite <- Hyz, assoc in Hxyz; setoid_rewrite <- Hxyz.
-      exists (x · y). reflexivity.
-  Qed.
-
-  Global Program Instance pRA_preo : preoType (ra_pos T) | 0 := mkPOType pra_ord.
-
-  Global Instance equiv_pord_pra : Proper (equiv ==> equiv ==> equiv) (pord (T := ra_pos T)).
-  Proof.
-    intros s1 s2 EQs t1 t2 EQt; split; intros [s HS].
-    - exists s; rewrite <- EQs, <- EQt; assumption.
-    - exists s; rewrite EQs, EQt; assumption.
-  Qed.
-
-  Lemma unit_min r : ra_pos_unit ⊑ r.
-  Proof.
-    exists (ra_proj r). simpl.
-    now erewrite ra_op_unit2 by apply _.
-  Qed.
-
   Definition ra_ord t1 t2 :=
     exists t, t · t1 == t2.
 
@@ -245,12 +149,10 @@ Section Order.
     rewrite <- assoc, (comm y), <- assoc, assoc, (comm y1), EQx, EQy; reflexivity.
   Qed.
 
-  Lemma ord_res_pres r s :
-    (r ⊑ s) <-> (ra_proj r ⊑ ra_proj s).
+  Lemma unit_min r : 1 ⊑ r.
   Proof.
-    split; intros HR.
-    - destruct HR as [d EQ]. exists d. assumption.
-    - destruct HR as [d EQ]. exists d. assumption.
+    exists r. simpl.
+    now erewrite ra_op_unit2 by apply _.
   Qed.
 
 End Order.
diff --git a/world_prop.v b/world_prop.v
index a6faa4534961f59b7a7050d668b3696708cf0d26..cce80cff1078f13ec0805ccc8584123895dc6418 100644
--- a/world_prop.v
+++ b/world_prop.v
@@ -6,8 +6,6 @@ Require Import ModuRes.RA ModuRes.UPred.
 
 (* This interface keeps some of the details of the solution opaque *)
 Module Type WORLD_PROP (Res : RA_T).
-  Definition pres := ra_pos Res.res.
-  
   (* PreProp: The solution to the recursive equation. Equipped with a discrete order. *)
   Parameter PreProp    : cmtyp.
   Instance PProp_preo  : preoType PreProp   := disc_preo PreProp.
@@ -16,7 +14,7 @@ Module Type WORLD_PROP (Res : RA_T).
 
   (* Defines Worlds, Propositions *)
   Definition Wld       := nat -f> PreProp.
-  Definition Props     := Wld -m> UPred pres.
+  Definition Props     := Wld -m> UPred (Res.res).
 
   (* Define all the things on Props, so they have names - this shortens the terms later. *)
   Instance Props_ty   : Setoid Props  | 1 := _.
diff --git a/world_prop_recdom.v b/world_prop_recdom.v
index da2a1258913b24b260bd35b34e00ff49578ab1ff..5d67bb3d55e55adde8b4560184b5037fd5dbe5e2 100644
--- a/world_prop_recdom.v
+++ b/world_prop_recdom.v
@@ -7,9 +7,7 @@ Require Import world_prop.
 
 (* Now we come to the actual implementation *)
 Module WorldProp (Res : RA_T) : WORLD_PROP Res.
-
   (** The construction is parametric in the monoid we choose *)
-  Definition pres := ra_pos Res.res.
 
   (** We need to build a functor that would describe the following
       recursive domain equation:
@@ -25,7 +23,7 @@ Module WorldProp (Res : RA_T) : WORLD_PROP Res.
     Local Instance pcm_disc P `{cmetric P} : pcmType P | 2000 := disc_pcm P.
 
     Definition FProp P `{cmP : cmetric P} :=
-      (nat -f> P) -m> UPred pres.
+      (nat -f> P) -m> UPred (Res.res).
 
     Context {U V} `{cmU : cmetric U} `{cmV : cmetric V}.