diff --git a/iris_core.v b/iris_core.v index e51560d5167a31603e016ba65c03ddf181f4162e..0864d1233f788800b920a757a007b3cf87e2fc46 100644 --- a/iris_core.v +++ b/iris_core.v @@ -73,7 +73,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ (** And now we're ready to build the IRIS-specific connectives! *) - Implicit Types (P Q : Props) (w : Wld) (n i k : nat) (m : mask) (r : pres) (u v : res) (σ : state). + Implicit Types (P Q : Props) (w : Wld) (n i k : nat) (m : mask) (r u v : res) (σ : state). Section Necessitation. (** Note: this could be moved to BI, since it's possible to define @@ -82,7 +82,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Local Obligation Tactic := intros; resp_set || eauto with typeclass_instances. Program Definition box : Props -n> Props := - n[(fun P => m[(fun w => mkUPred (fun n r => P w n ra_pos_unit) _)])]. + n[(fun P => m[(fun w => mkUPred (fun n r => P w n 1) _)])]. Next Obligation. intros n m r s HLe _ Hp; rewrite-> HLe; assumption. Qed. @@ -129,11 +129,20 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ intros w n r; reflexivity. Qed. + Lemma box_dup P : + â–¡P == â–¡P * â–¡P. + Proof. + intros w n r. split. + - intros HP. exists 1 r. split; [now rewrite ra_op_unit|]. + split; assumption. + - intros [r1 [r2 [_ [HP _] ] ] ]. assumption. + Qed. + (** "Internal" equality **) Section IntEq. Context {T} `{mT : metric T}. - Program Definition intEqP (t1 t2 : T) : UPred pres := + Program Definition intEqP (t1 t2 : T) : UPred res := mkUPred (fun n r => t1 = S n = t2) _. Next Obligation. intros n1 n2 _ _ HLe _; apply mono_dist; omega. @@ -211,9 +220,9 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Note that this makes ownR trivially *False* for invalid u: There is no element v such that u · v = r (where r is valid) *) Program Definition ownR: res -=> Props := - s[(fun u => pcmconst (mkUPred(fun n r => u ⊑ ra_proj r) _) )]. + s[(fun u => pcmconst (mkUPred(fun n r => u ⊑ r) _) )]. Next Obligation. - intros n m r1 r2 Hle [d Hd ] [e He]. change (u ⊑ (ra_proj r2)). rewrite <-Hd, <-He. + intros n m r1 r2 Hle [d Hd ] [e He]. change (u ⊑ r2). rewrite <-Hd, <-He. exists (d · e). rewrite assoc. reflexivity. Qed. Next Obligation. @@ -229,8 +238,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Proof. intros w n r; split; [intros Hut | intros [r1 [r2 [EQr [Hu Ht] ] ] ] ]. - destruct Hut as [s Heq]. rewrite-> assoc in Heq. - exists↓ (s · u) by auto_valid. - exists↓ v by auto_valid. + exists (s · u) v. split; [|split]. + rewrite <-Heq. reflexivity. + exists s. reflexivity. @@ -241,13 +249,6 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ rewrite <-assoc, (comm _ u), assoc. reflexivity. Qed. - Lemma ownR_valid u (INVAL: ~↓u): - ownR u ⊑ ⊥. - Proof. - intros w n [r VAL] [v Heq]. hnf. unfold ra_proj, proj1_sig in Heq. - rewrite <-Heq in VAL. apply ra_op_valid2 in VAL. contradiction. - Qed. - (** Proper physical state: ownership of the machine state **) Program Definition ownS : state -n> Props := n[(fun s => ownR (ex_own _ s, 1))]. @@ -264,7 +265,7 @@ Module Type IRIS_CORE (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ n[(fun r : RL.res => ownR (1, r))]. Next Obligation. intros r1 r2 EQr. destruct n as [| n]; [apply dist_bound |eapply dist_refl]. - simpl in EQr. intros w m t. simpl. change ( (ex_unit state, r1) ⊑ (ra_proj t) <-> (ex_unit state, r2) ⊑ (ra_proj t)). rewrite EQr. reflexivity. + simpl in EQr. intros w m t. simpl. change ( (ex_unit state, r1) ⊑ t <-> (ex_unit state, r2) ⊑ t). rewrite EQr. reflexivity. Qed. Lemma ownL_timeless {r : RL.res} : valid(timeless(ownL r)). diff --git a/iris_derived_rules.v b/iris_derived_rules.v index 3d4b04cb8e1c18277f63989d811460bb2931940a..eb9452559fb19f20427c36f6db7f341bf0114bb6 100644 --- a/iris_derived_rules.v +++ b/iris_derived_rules.v @@ -15,8 +15,6 @@ Module Type IRIS_DERIVED_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (W Section DerivedRules. - Existing Instance LP_isval. - Implicit Types (P : Props) (i : nat) (m : mask) (e : expr) (r : res). Lemma vsFalse m1 m2 : diff --git a/iris_ht_rules.v b/iris_ht_rules.v index 7d5f1e5f4b00a2571d8a8488c91d03986bac923a..203e9d70c28962e72e3c60e4bdbd0bb38d93a131 100644 --- a/iris_ht_rules.v +++ b/iris_ht_rules.v @@ -16,7 +16,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO Existing Instance LP_isval. - Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : pres). + Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : res). (** Ret **) Program Definition eqV v : vPred := @@ -247,24 +247,20 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO rewrite <- EQr, <- assoc in HE; edestruct He as [HV [HS [HF HS'] ] ]; try eassumption; []. clear He; split; [intros HVal; clear HS HF IH HE | split; [clear HV HF HE | clear HV HS HE; split; [clear HS' | clear HF] ]; intros ]. - specialize (HV HVal); destruct HV as [w'' [r1' [HSw' [Hφ HE] ] ] ]. - rewrite ->assoc in HE. exists w''. - exists↓ (ra_proj r1' · ra_proj r2). - { apply wsat_valid in HE. auto_valid. } + rewrite ->assoc in HE. exists w'' (r1' · r2). split; [eassumption | split; [| eassumption ] ]. exists r1' r2; split; [reflexivity | split; [assumption |] ]. unfold lt in HLt; rewrite ->HLt, <- HSw', <- HSw; apply HLR. - edestruct HS as [w'' [r1' [HSw' [He HE] ] ] ]; try eassumption; []; clear HS. destruct k as [| k]; [exists w' r1'; split; [reflexivity | split; [apply wpO | exact I] ] |]. - rewrite ->assoc in HE. exists w''. exists↓ (ra_proj r1' · ra_proj r2). - { apply wsat_valid in HE. auto_valid. } + rewrite ->assoc in HE. exists w'' (r1' · r2). split; [eassumption | split; [| eassumption] ]. eapply IH; try eassumption; [ reflexivity |]. unfold lt in HLt; rewrite ->Le.le_n_Sn, HLt, <- HSw', <- HSw; apply HLR. - specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret [HSw' [HWF [HWR HE] ] ] ] ] ]. destruct k as [| k]; [exists w' rfk rret; split; [reflexivity | split; [apply wpO | split; [apply wpO | exact I] ] ] |]. - rewrite ->assoc, <- (assoc (_ rfk)) in HE. - exists w''. exists rfk. exists↓ (ra_proj rret · ra_proj r2). - { clear- HE. apply wsat_valid in HE. eapply ra_op_valid2, ra_op_valid; try now apply _. eassumption. } + rewrite ->assoc, <- (assoc rfk) in HE. + exists w''. exists rfk (rret · r2). split; [eassumption | split; [| split; eassumption] ]. eapply IH; try eassumption; [ reflexivity |]. unfold lt in HLt; rewrite ->Le.le_n_Sn, HLt, <- HSw', <- HSw; apply HLR. @@ -288,8 +284,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO edestruct He as [_ [HeS _] ]; try eassumption; []. edestruct HeS as [w'' [r1' [HSw' [He' HE'] ] ] ]; try eassumption; []. clear HE He HeS; rewrite ->assoc in HE'. - exists w''. exists↓ (ra_proj r1' · ra_proj r2). - { clear- HE'. apply wsat_valid in HE'. auto_valid. } + exists w'' (r1' · r2). split; [eassumption | split; [| eassumption] ]. assert (HNV : ~ is_value ei) by (intros HV; eapply (values_stuck _ HV); [symmetry; apply fill_empty | repeat eexists; eassumption]). @@ -299,12 +294,11 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO assert (HVal := atomic_step _ _ _ _ HAt HStep). clear - He' HVal HLR; rename w'' into w; rewrite ->unfold_wp; intros w'; intros. split; [intros HV; clear HVal | split; intros; [exfalso| split; intros; [exfalso |] ] ]. - + rewrite ->unfold_wp in He'. rewrite ra_proj_cancel in HE. rewrite <-assoc in HE. + + rewrite ->unfold_wp in He'. rewrite <-assoc in HE. edestruct He' as [HVal _]; try eassumption; []. specialize (HVal HV); destruct HVal as [w'' [r1'' [HSw' [Hφ HE'] ] ] ]. rewrite ->assoc in HE'. - exists w''. exists↓ (ra_proj r1'' · ra_proj r2). - { clear- HE'. apply wsat_valid in HE'. auto_valid. } + exists w'' (r1'' · r2). split; [eassumption | split; [| eassumption] ]. exists r1'' r2; split; [reflexivity | split; [assumption |] ]. unfold lt in HLt; rewrite <- HLt, HSw, HSw' in HLR; apply HLR. @@ -315,7 +309,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO + unfold safeExpr. now auto. - subst; eapply fork_not_atomic; eassumption. - rewrite <- EQr, <- assoc in HE; rewrite ->unfold_wp in He. - specialize (He w' k (ra_proj r2 · rf) mf σ HSw HLt HD0 HE); clear HE. + specialize (He w' k (r2 · rf) mf σ HSw HLt HD0 HE); clear HE. destruct He as [_ [_ [_ HS'] ] ]; auto. Qed. @@ -339,7 +333,7 @@ Module Type IRIS_HT_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO rewrite ->fill_empty; rewrite ->unfold_wp; rewrite <- (le_S_n _ _ HLt), HSw in HLR. clear - HLR; intros w''; intros; split; [intros | split; intros; [exfalso | split; intros; [exfalso |] ] ]. + do 2 eexists; split; [reflexivity | split; [| eassumption] ]. - exists (ra_pos_unit) r2; split; [unfold ra_pos_unit; simpl; now erewrite ra_op_unit by apply _ |]. + exists 1 r2; split; [simpl; now erewrite ra_op_unit by apply _ |]. split; [| unfold lt in HLt; rewrite <- HLt, HSw in HLR; apply HLR]. simpl; reflexivity. + eapply values_stuck; [exact fork_ret_is_value | eassumption | repeat eexists; eassumption]. diff --git a/iris_meta.v b/iris_meta.v index d75aa2f42deb8a5146e714d80a36b30d2a81f834..5f65742ad9913c595981c5b0d2ce1caa1807930e 100644 --- a/iris_meta.v +++ b/iris_meta.v @@ -17,7 +17,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Local Open Scope list_scope. (* weakest-pre for a threadpool *) - Inductive wptp (safe : bool) (m : mask) (w : Wld) (n : nat) : tpool -> list pres -> list vPred -> Prop := + Inductive wptp (safe : bool) (m : mask) (w : Wld) (n : nat) : tpool -> list res -> list vPred -> Prop := | wp_emp : wptp safe m w n nil nil nil | wp_cons e φ r tp rs φs (WPE : wp safe m e φ w n r) @@ -77,7 +77,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ [reflexivity | now apply le_n | now apply mask_emp_disjoint | |]. + eapply wsat_equiv, HE; try reflexivity; [apply mask_emp_union |]. rewrite !comp_list_app; simpl comp_list; unfold equiv. - rewrite ->assoc, (comm (_ r)), <- assoc. reflexivity. + rewrite ->assoc, (comm r), <- assoc. reflexivity. + edestruct HS as [w' [r' [HSW [WPE' HE'] ] ] ]; [reflexivity | eassumption | clear WPE HS]. setoid_rewrite HSW. eapply IHn; clear IHn. @@ -86,7 +86,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ constructor; [eassumption | eapply wptp_closure, WPTP; [assumption | now auto with arith] ]. * eapply wsat_equiv, HE'; [now erewrite mask_emp_union| |reflexivity]. rewrite !comp_list_app; simpl comp_list; unfold equiv. - rewrite ->2!assoc, (comm (_ r')). reflexivity. + rewrite ->2!assoc, (comm r'). reflexivity. } (* fork *) inversion H; subst; clear H. @@ -96,7 +96,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ [reflexivity | now apply le_n | now apply mask_emp_disjoint | |]. + eapply wsat_equiv, HE; try reflexivity; [apply mask_emp_union |]. rewrite !comp_list_app; simpl comp_list; unfold equiv. - rewrite ->assoc, (comm (_ r)), <- assoc. reflexivity. + rewrite ->assoc, (comm r), <- assoc. reflexivity. + specialize (HF _ _ eq_refl); destruct HF as [w' [rfk [rret [HSW [WPE' [WPS HE'] ] ] ] ] ]; clear WPE. setoid_rewrite HSW. edestruct IHn as [w'' [rs'' [φs'' [HSW'' [HSWTP'' HSE''] ] ] ] ]; first eassumption; first 2 last. * exists w'' rs'' ([umconst ⊤] ++ φs''). split; [eassumption|]. @@ -107,16 +107,16 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ constructor; [|now constructor]. eassumption. * eapply wsat_equiv, HE'; try reflexivity; [symmetry; apply mask_emp_union |]. rewrite comp_list_app. simpl comp_list. rewrite !comp_list_app. simpl comp_list. - rewrite (comm (_ rfk)). erewrite ra_op_unit by apply _. - rewrite (comm _ (_ rfk)). rewrite ->!assoc. eapply ra_op_proper;[now apply _ | |reflexivity]. unfold equiv. - rewrite <-assoc, (comm (_ rret)). rewrite (comm (_ rret)). reflexivity. + rewrite (comm rfk). erewrite ra_op_unit by apply _. + rewrite (comm _ rfk). rewrite ->!assoc. eapply ra_op_proper;[now apply _ | |reflexivity]. unfold equiv. + rewrite <-assoc, (comm rret). rewrite comm. reflexivity. Qed. Lemma adequacy_ht {safe m e P Q n k tp' σ σ' w r} (HT : valid (ht safe m P e Q)) (HSN : stepn n ([e], σ) (tp', σ')) (HP : P w (n + S k) r) - (HE : wsat σ m (ra_proj r) w @ n + S k) : + (HE : wsat σ m r w @ n + S k) : exists w' rs' φs', w ⊑ w' /\ wptp safe m w' (S k) tp' rs' (Q :: φs') /\ wsat σ' m (comp_list rs') w' @ S k. Proof. @@ -134,13 +134,12 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ wptp safe m w' (S k') tp' rs' (Q :: φs') /\ wsat σ' m (comp_list rs') w' @ S k'. Proof. destruct (steps_stepn _ _ HSN) as [n HSN']. clear HSN. - pose↓ r := (ex_own _ σ, 1:RL.res). - { unfold ra_valid. simpl. split; [|eapply ra_valid_unit; now apply _]. exact I. } + pose (r := (ex_own _ σ, 1:RL.res)). edestruct (adequacy_ht (w:=fdEmpty) (k:=k') (r:=r) HT HSN') as [w' [rs' [φs' [HW [HSWTP HWS] ] ] ] ]; clear HT HSN'. - exists (ra_unit _); now rewrite ->ra_op_unit by apply _. - - hnf. rewrite Plus.plus_comm. exists (fdEmpty (V:=pres)). split. - + unfold r, comp_map. simpl. rewrite ra_op_unit2. split; first assumption. - reflexivity. + - hnf. rewrite Plus.plus_comm. exists (fdEmpty (V:=res)). split. + + unfold r, comp_map. simpl. rewrite ra_op_unit2. split; last reflexivity. + unfold ra_valid. simpl. split; [|eapply ra_valid_unit; now apply _]. exact I. + intros i _; split; [reflexivity |]. intros _ _ []. - do 3 eexists. split; [eassumption|]. assumption. @@ -192,7 +191,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ - rewrite mask_emp_union. eapply wsat_equiv, HWS; try reflexivity. rewrite comp_list_app. simpl comp_list. - rewrite ->(assoc (comp_list rs1)), ->(comm (comp_list rs1) (ra_proj r)), <-assoc. reflexivity. + rewrite ->(assoc (comp_list rs1)), ->(comm (comp_list rs1) r), <-assoc. reflexivity. - apply HSafe. reflexivity. Qed. @@ -203,7 +202,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Definition wf_nat_ind := well_founded_induction Wf_nat.lt_wf. - Implicit Types (P : Props) (i n k : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : pres) (w : Wld) (σ : state). + Implicit Types (P : Props) (i n k : nat) (safe : bool) (m : mask) (e : expr) (Q : vPred) (r : res) (w : Wld) (σ : state). Program Definition restrictV (Q : expr -n> Props) : vPred := n[(fun v => Q (` v))]. @@ -288,7 +287,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ have {Hei} Hei: (E ei) w' (S k) rei by propsM Hei. have HSw': w' ⊑ w' by reflexivity. have HLe: S k <= S k by omega. - have H1ei: ra_pos_unit ⊑ rei by apply: unit_min. + have H1ei: 1 ⊑ rei by apply: unit_min. have HLt': k < S k by omega. move: HW; rewrite {1}mask_full_union -{1}(mask_full_union mask_emp) -assoc => HW. case: (atomic_dec ei) => HA; last first. @@ -302,10 +301,8 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ move: {HD} (mask_emp_disjoint (mask_full ∪ mask_full)) => HD. move: {He HSw' HW} (He _ _ _ _ _ HSw' HLt' HD HW) => [w'' [r' [HSw' [Hei' HW] ] ] ]. move: HW; rewrite assoc=>HW. - pose↓ α := (ra_proj r' · ra_proj rK). - + by apply wsat_valid in HW; auto_valid. have {HSwâ‚€} HSwâ‚€: wâ‚€ ⊑ w'' by transitivity w'. - exists w'' α; split; [done| split]; last first. + exists w'' (r' · rK); split; [done| split]; last first. + by move: HW; rewrite 2! mask_full_union => HW; wsatM HW. apply: (IH _ HLt _ _ _ _ HSwâ‚€); last done. rewrite fillE; exists r' rK; split; [exact: equivR | split; [by propsM Hei' |] ]. @@ -334,9 +331,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ move: {Hv} (Hv HV) => [w''' [rei' [HSw'' [Hei' HW] ] ] ]. (* now IH *) move: HW; rewrite assoc => HW. - pose↓ α := (ra_proj rei' · ra_proj rK). - + by apply wsat_valid in HW; auto_valid. - exists w''' α. split; first by transitivity w''. + exists w''' (rei' · rK). split; first by transitivity w''. split; last by rewrite mask_full_union -(mask_full_union mask_emp). rewrite/= in Hei'; rewrite fill_empty -Hk' in Hei' * => {Hk'}. have {HSwâ‚€} HSwâ‚€ : wâ‚€ ⊑ w''' by transitivity w''; first by transitivity w'. @@ -351,7 +346,7 @@ Module Type IRIS_META (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Section Lifting. - Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q R : vPred) (r : pres). + Implicit Types (P : Props) (i : nat) (safe : bool) (m : mask) (e : expr) (Q R : vPred) (r : res). Program Definition lift_ePred (φ : expr -=> Prop) : expr -n> Props := diff --git a/iris_plog.v b/iris_plog.v index 1f9118f2e0f8e7d7af5dfd26c8c95444ecf7a477..3df7d55d8804d273e73a536cb1c1aec6c3202595 100644 --- a/iris_plog.v +++ b/iris_plog.v @@ -17,14 +17,12 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Local Open Scope bi_scope. Local Open Scope iris_scope. - Implicit Types (P : Props) (w : Wld) (n i k : nat) (m : mask) (r : pres) (u v : res) (σ : state) (φ : vPred). - - + Implicit Types (P : Props) (w : Wld) (n i k : nat) (m : mask) (r u v : res) (σ : state) (φ : vPred). Section Invariants. (** Invariants **) - Definition invP i P w : UPred pres := + Definition invP i P w : UPred res := intEq (w i) (Some (ı' P)) w. Program Definition inv i : Props -n> Props := n[(fun P => m[(invP i P)])]. @@ -58,10 +56,10 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ constructs. Hopefully we can provide a fold that'd work for that at some point *) - Fixpoint comp_list (xs : list pres) : res := + Fixpoint comp_list (xs : list res) : res := match xs with | nil => 1 - | (x :: xs)%list => ra_proj x · comp_list xs + | (x :: xs)%list => x · comp_list xs end. Lemma comp_list_app rs1 rs2 : @@ -71,57 +69,54 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ now rewrite ->IHrs1, assoc. Qed. - Definition cod (m : nat -f> pres) : list pres := List.map snd (findom_t m). - Definition comp_map (m : nat -f> pres) : res := comp_list (cod m). + Definition cod (m : nat -f> res) : list res := List.map snd (findom_t m). + Definition comp_map (m : nat -f> res) : res := comp_list (cod m). - Lemma comp_map_remove (rs : nat -f> pres) i r (HLu : rs i == Some r) : - comp_map rs == ra_proj r · comp_map (fdRemove i rs). + Lemma comp_map_remove (rs : nat -f> res) i r (HLu : rs i == Some r) : + comp_map rs == r · comp_map (fdRemove i rs). Proof. destruct rs as [rs rsP]; unfold comp_map, cod, findom_f in *; simpl findom_t in *. induction rs as [| [j s] ]; [contradiction |]; simpl comp_list; simpl in HLu. - destruct (comp i j); [do 5 red in HLu; rewrite-> HLu; reflexivity | contradiction |]. + destruct (comp i j); [red in HLu; rewrite-> HLu; reflexivity | contradiction |]. simpl comp_list; rewrite ->IHrs by eauto using SS_tail. - rewrite-> !assoc, (comm (_ s)); reflexivity. + rewrite-> !assoc, (comm s). reflexivity. Qed. - Lemma comp_map_insert_new (rs : nat -f> pres) i r (HNLu : rs i == None) : - ra_proj r · comp_map rs == comp_map (fdUpdate i r rs). + Lemma comp_map_insert_new (rs : nat -f> res) i r (HNLu : rs i == None) : + r · comp_map rs == comp_map (fdUpdate i r rs). Proof. destruct rs as [rs rsP]; unfold comp_map, cod, findom_f in *; simpl findom_t in *. induction rs as [| [j s] ]; [reflexivity | simpl comp_list; simpl in HNLu]. destruct (comp i j); [contradiction | reflexivity |]. simpl comp_list; rewrite <- IHrs by eauto using SS_tail. - rewrite-> !assoc, (comm (_ r)); reflexivity. + rewrite-> !assoc, (comm r); reflexivity. Qed. - Lemma comp_map_insert_old (rs : nat -f> pres) i r1 r2 r - (HLu : rs i == Some r1) (HEq : ra_proj r1 · ra_proj r2 == ra_proj r) : - ra_proj r2 · comp_map rs == comp_map (fdUpdate i r rs). + Lemma comp_map_insert_old (rs : nat -f> res) i r1 r2 r + (HLu : rs i == Some r1) (HEq : r1 · r2 == r): + r2 · comp_map rs == comp_map (fdUpdate i r rs). Proof. destruct rs as [rs rsP]; unfold comp_map, cod, findom_f in *; simpl findom_t in *. induction rs as [| [j s] ]; [contradiction |]; simpl comp_list; simpl in HLu. - destruct (comp i j); [do 5 red in HLu; rewrite-> HLu; clear HLu | contradiction |]. - - simpl comp_list; rewrite ->assoc, (comm (_ r2)), <- HEq; reflexivity. + destruct (comp i j); [red in HLu; rewrite-> HLu; clear HLu | contradiction |]. + - simpl comp_list; rewrite ->assoc, (comm r2), <- HEq; reflexivity. - simpl comp_list; rewrite <- IHrs by eauto using SS_tail. - rewrite-> !assoc, (comm (_ r2)); reflexivity. + rewrite-> !assoc, (comm r2); reflexivity. Qed. - Definition state_sat (r: res) σ: Prop := ↓r /\ - match fst r with - | ex_own s => s = σ - | _ => True - end. + (* When is a resource okay with a state? *) + Definition res_sat (r: res) σ: Prop := ↓r /\ fst r == ex_own state σ. - Global Instance state_sat_dist : Proper (equiv ==> equiv ==> iff) state_sat. + Global Instance res_sat_dist : Proper (equiv ==> equiv ==> iff) res_sat. Proof. - intros [ [s1| |] r1] [ [s2| |] r2] [EQs EQr] σ1 σ2 EQσ; unfold state_sat; simpl in *; try tauto; try rewrite !EQs; try rewrite !EQr; try rewrite !EQσ; reflexivity. + intros [ [s1| |] r1] [ [s2| |] r2] [EQs EQr] σ1 σ2 EQσ; unfold res_sat; simpl in *; try tauto; try rewrite !EQs; try rewrite !EQr; try rewrite !EQσ; reflexivity. Qed. Global Instance preo_unit : preoType () := disc_preo (). Program Definition wsat σ m (r : res) w : UPred () := - â–¹ (mkUPred (fun n _ => exists rs : nat -f> pres, - state_sat (r · (comp_map rs)) σ + â–¹ (mkUPred (fun n _ => exists rs : nat -f> res, + res_sat (r · (comp_map rs)) σ /\ forall i (Hm : m i), (i ∈ dom rs <-> i ∈ dom w) /\ forall Ï€ ri (HLw : w i == Some Ï€) (HLrs : rs i == Some ri), @@ -201,10 +196,10 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Section ViewShifts. Local Obligation Tactic := intros. - Program Definition preVS m1 m2 P w : UPred pres := + Program Definition preVS m1 m2 P w : UPred res := mkUPred (fun n r => forall w1 (rf: res) mf σ k (HSub : w ⊑ w1) (HLe : k < n) (HD : mf # m1 ∪ m2) - (HE : wsat σ (m1 ∪ mf) (ra_proj r · rf) w1 @ S k), + (HE : wsat σ (m1 ∪ mf) (r · rf) w1 @ S k), exists w2 r', w1 ⊑ w2 /\ P w2 (S k) r' /\ wsat σ (m2 ∪ mf) (r' · rf) w2 @ S k) _. @@ -213,10 +208,9 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ destruct (HP w1 (rd · rf) mf σ k) as [w2 [r1' [HW [HP' HE'] ] ] ]; try assumption; [now eauto with arith | |]. - eapply wsat_equiv, HE; try reflexivity. - rewrite ->assoc, (comm (_ r1)), HR; reflexivity. - - rewrite ->assoc, (comm (_ r1')) in HE'. - exists w2. exists↓ (rd · ra_proj r1'). - { apply wsat_valid in HE'. auto_valid. } + rewrite ->assoc, (comm r1), HR; reflexivity. + - rewrite ->assoc, (comm r1') in HE'. + exists w2 (rd · r1'). split; [assumption | split; [| assumption] ]. eapply uni_pred, HP'; [reflexivity|]. exists rd. reflexivity. Qed. @@ -280,19 +274,19 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ Definition wpFP safe m (WP : expr -n> vPred -n> Props) e φ w n r := forall w' k rf mf σ (HSw : w ⊑ w') (HLt : k < n) (HD : mf # m) - (HE : wsat σ (m ∪ mf) (ra_proj r · rf) w' @ S k), + (HE : wsat σ (m ∪ mf) (r · rf) w' @ S k), (forall (HV : is_value e), exists w'' r', w' ⊑ w'' /\ φ (exist _ e HV) w'' (S k) r' - /\ wsat σ (m ∪ mf) (ra_proj r' · rf) w'' @ S k) /\ + /\ wsat σ (m ∪ mf) (r' · rf) w'' @ S k) /\ (forall σ' ei ei' K (HDec : e = K [[ ei ]]) (HStep : prim_step (ei, σ) (ei', σ')), exists w'' r', w' ⊑ w'' /\ WP (K [[ ei' ]]) φ w'' k r' - /\ wsat σ' (m ∪ mf) (ra_proj r' · rf) w'' @ k) /\ + /\ wsat σ' (m ∪ mf) (r' · rf) w'' @ k) /\ (forall e' K (HDec : e = K [[ fork e' ]]), exists w'' rfk rret, w' ⊑ w'' /\ WP (K [[ fork_ret ]]) φ w'' k rret /\ WP e' (umconst ⊤) w'' k rfk - /\ wsat σ (m ∪ mf) (ra_proj rfk · ra_proj rret · rf) w'' @ k) /\ + /\ wsat σ (m ∪ mf) (rfk · rret · rf) w'' @ k) /\ (forall HSafe : safe = true, safeExpr e σ). (* Define the function wp will be a fixed-point of *) @@ -305,27 +299,23 @@ Module Type IRIS_PLOG (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORLD_ [| omega | ..]; try assumption; []. split; [clear HS HF | split; [clear HV HF | split; clear HV HS; [| clear HF ] ] ]; intros. - specialize (HV HV0); destruct HV as [w'' [r1' [HSw' [Hφ HE'] ] ] ]. - rewrite ->assoc, (comm (_ r1')) in HE'. - exists w''. exists↓ (rd · ra_proj r1'). - { clear -HE'. apply wsat_valid in HE'. auto_valid. } + rewrite ->assoc, (comm r1') in HE'. + exists w'' (rd · r1'). split; [assumption | split; [| assumption] ]. eapply uni_pred, Hφ; [| exists rd]; reflexivity. - specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r1' [HSw' [HWP HE'] ] ] ]. - rewrite ->assoc, (comm (_ r1')) in HE'. exists w''. + rewrite ->assoc, (comm r1') in HE'. exists w''. destruct k as [| k]; [exists r1'; simpl wsat; tauto |]. - exists↓ (rd · ra_proj r1'). - { clear- HE'. apply wsat_valid in HE'. auto_valid. } + exists (rd · r1'). split; [assumption | split; [| assumption] ]. eapply uni_pred, HWP; [| exists rd]; reflexivity. - specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret1 [HSw' [HWR [HWF HE'] ] ] ] ] ]. destruct k as [| k]; [exists w'' rfk rret1; simpl wsat; tauto |]. - rewrite ->assoc, <- (assoc (_ rfk)) in HE'. - exists w''. exists rfk. exists↓ (rd · ra_proj rret1). - { clear- HE'. apply wsat_valid in HE'. rewrite comm. eapply ra_op_valid, ra_op_valid; try now apply _. - rewrite ->(comm (_ rfk)) in HE'. eassumption. } + rewrite ->assoc, <- (assoc rfk) in HE'. + exists w''. exists rfk (rd · rret1). repeat (split; try assumption). + eapply uni_pred, HWR; [| exists rd]; reflexivity. - + clear -HE'. unfold ra_proj. rewrite ->(comm _ rd) in HE'. exact HE'. + + clear -HE'. rewrite ->(comm _ rd) in HE'. exact HE'. - auto. Qed. Next Obligation. diff --git a/iris_vs_rules.v b/iris_vs_rules.v index 5b905802b583ae68295efbeed8b366afe33df548..31b32531f20e507ef2a0a5e4f823ecee8c0451b6 100644 --- a/iris_vs_rules.v +++ b/iris_vs_rules.v @@ -11,7 +11,7 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO Local Open Scope bi_scope. Local Open Scope iris_scope. - Implicit Types (P Q R : Props) (w : Wld) (n i k : nat) (m : mask) (r : pres) (σ : state). + Implicit Types (P Q R : Props) (w : Wld) (n i k : nat) (m : mask) (r : res) (σ : state). Section ViewShiftProps. @@ -38,14 +38,13 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO destruct HE as [rs [HE HM] ]. destruct (rs i) as [ri |] eqn: HLr. - rewrite ->comp_map_remove with (i := i) (r := ri) in HE by now eapply equivR. - rewrite ->assoc, <- (assoc (_ r)), (comm rf), assoc in HE. - exists w'. - exists↓ (ra_proj r · ra_proj ri). { destruct HE as [HE _]. eapply ra_op_valid, ra_op_valid; eauto with typeclass_instances. } + rewrite ->assoc, <- (assoc r), (comm rf), assoc in HE. + exists w' (r · ri). split; [reflexivity |]. split. + simpl; eapply HInv; [now auto with arith |]. eapply uni_pred, HM with i; - [| exists (ra_proj r) | | | rewrite HLr]; try reflexivity; [reflexivity| |]. + [| exists r | | | rewrite HLr]; try reflexivity. * left; unfold mask_sing, mask_set. destruct (Peano_dec.eq_nat_dec i i); tauto. * specialize (HSub i); rewrite HLu in HSub. @@ -72,17 +71,10 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO (* get rid of the invisible 1/2 *) do 8 red in HInv. destruct HE as [rs [HE HM] ]. - exists w' ra_pos_unit; split; [reflexivity | split; [exact I |] ]. - rewrite ->(comm (_ r)), <-assoc in HE. - remember (match rs i with Some ri => ri | None => ra_pos_unit end) as ri eqn: EQri. - pose↓ rri := (ra_proj ri · ra_proj r). - { destruct (rs i) as [rsi |] eqn: EQrsi; subst; - [| simpl; rewrite ->ra_op_unit by apply _; now apply ra_pos_valid]. - clear - HE EQrsi. destruct HE as [HE _]. - rewrite ->comp_map_remove with (i:=i) in HE by (eapply equivR; eassumption). - rewrite ->(assoc (_ r)), (comm (_ r)), comm, assoc, <-(assoc (_ rsi) _), (comm _ (ra_proj r)), assoc in HE. - eapply ra_op_valid, ra_op_valid; now eauto with typeclass_instances. - } + exists w' 1; split; [reflexivity | split; [exact I |] ]. + rewrite ->(comm r), <-assoc in HE. + remember (match rs i with Some ri => ri | None => 1 end) as ri eqn: EQri. + pose (rri := (ri · r)). exists (fdUpdate i rri rs); split; [| intros j Hm]. - simpl. erewrite ra_op_unit by apply _. clear - HE EQri. destruct (rs i) as [rsi |] eqn: EQrsi. @@ -102,11 +94,8 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO apply HInv; [now auto with arith |]. eapply uni_pred, HP; [now auto with arith |]. rewrite <-HLrs. clear dependent ri0. - exists (ra_proj ri · ra_proj r1). - subst rri. - (* Coq, are you serious?!?? *) - change (ra_proj ri · ra_proj r1 · ra_proj r2 == (ra_proj ri · ra_proj r)). - rewrite <-HR, assoc. reflexivity. + exists (ri · r1). + subst rri. rewrite <-HR, assoc. reflexivity. Qed. Lemma vsTrans P Q R m1 m2 m3 (HMS : m2 ⊆ m1 ∪ m3) : @@ -134,7 +123,7 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO intros w' n r1 Himp w HSub; rewrite ->HSub in Himp; clear w' HSub. intros np rp HLe HS Hp w1; intros. exists w1 rp; split; [reflexivity | split; [| assumption ] ]. - eapply Himp; [assumption | now eauto with arith | now apply ord_res_pres, unit_min | ]. + eapply Himp; [assumption | now eauto with arith | now apply unit_min | ]. unfold lt in HLe0; rewrite ->HLe0, <- HSub; assumption. Qed. @@ -143,8 +132,8 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO Proof. intros w' n r1 HVS w HSub; specialize (HVS _ HSub); clear w' r1 HSub. intros np rpr HLe _ [rp [rr [HR [Hp Hr] ] ] ] w'; intros. - assert (HS : ra_unit _ ⊑ ra_proj rp) by (eapply unit_min). - specialize (HVS _ _ HLe HS Hp w' (ra_proj rr · rf) (mf ∪ mf0) σ k); clear HS. + assert (HS : ra_unit _ ⊑ rp) by (eapply unit_min). + specialize (HVS _ _ HLe HS Hp w' (rr · rf) (mf ∪ mf0) σ k); clear HS. destruct HVS as [w'' [rq [HSub' [Hq HEq] ] ] ]; try assumption; [| |]. - (* disjointness of masks: possible lemma *) clear - HD HDisj; intros i [ [Hmf | Hmf] Hm12]; [eapply HDisj; now eauto |]. @@ -152,8 +141,7 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO - rewrite ->assoc, HR; eapply wsat_equiv, HE; try reflexivity; []. clear; intros i; unfold mcup; tauto. - rewrite ->assoc in HEq. - exists w''. exists↓ (ra_proj rq · ra_proj rr). - { apply wsat_valid in HEq. auto_valid. } + exists w'' (rq · rr). split; [assumption | split]. + unfold lt in HLe0; rewrite ->HSub, HSub', <- HLe0 in Hr; exists rq rr. split; now auto. @@ -174,18 +162,14 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO (HU : forall rf (HD : ↓(rl · rf)), exists sl, P sl /\ ↓(sl · rf)) : valid (vs m m (ownL rl) (xist (ownLP P))). Proof. - unfold ownLP; intros _ _ _ w _ n [ [rp' rl'] Hrval] _ _ HG w'; intros. - destruct HE as [rs [ Hsat HE] ]. rewrite <-assoc in Hsat. simpl in Hsat. destruct Hsat as [Hval Hst]. + unfold ownLP; intros _ _ _ w _ n [rp' rl'] _ _ HG w'; intros. + destruct HE as [rs [ Hsat HE] ]. rewrite <-assoc in Hsat. destruct Hsat as [Hval Hst]. destruct HG as [ [rdp rdl] [_ EQrl] ]. simpl in EQrl. clear rdp. destruct (HU (rdl · snd(rf · comp_map rs))) as [rsl [HPrsl HCrsl] ]. - clear - Hval EQrl. eapply ra_prod_valid in Hval. destruct Hval as [_ Hsnd]. rewrite ->assoc, (comm rl), EQrl. rewrite ra_op_prod_snd in Hsnd. exact Hsnd. - - exists w'. exists↓ (rp', rsl). - { clear - Hval HCrsl. - apply ra_prod_valid. split; [|auto_valid]. - eapply ra_prod_valid in Hval. destruct Hval as [Hfst _]. - rewrite ra_op_prod_fst in Hfst. auto_valid. } + - exists w' (rp', rsl). split; first reflexivity. split. + exists (exist _ rsl HPrsl). simpl. exists (rp', 1:RL.res). simpl. @@ -239,10 +223,10 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO { intros j; destruct (Peano_dec.eq_nat_dec i j); [subst j; rewrite HLi; exact I|]. now rewrite ->fdUpdate_neq by assumption. } - exists (fdUpdate i (ı' P) w) (ra_pos_unit); split; [assumption | split]. + exists (fdUpdate i (ı' P) w) 1; split; [assumption | split]. - exists (exist _ i Hm). do 22 red. unfold proj1_sig. rewrite fdUpdate_eq; reflexivity. - - unfold ra_pos_unit, proj1_sig. erewrite ra_op_unit by apply _. + - erewrite ra_op_unit by apply _. destruct HE as [rs [HE HM] ]. exists (fdUpdate i r rs). assert (HRi : rs i = None). @@ -264,6 +248,18 @@ Module Type IRIS_VS_RULES (RL : RA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WO apply HM; assumption. Qed. + Lemma vsNotOwnInvalid m1 m2 r + (Hnval: ~↓r): + valid (vs m1 m2 (ownR r) ⊥). + Proof. + intros pw n s w _. clear pw s. + intros m s _ _. clear n. + intros [rs Heq] w' rf mf σ k _ _ _ [ ri [ [ Hval _ ] ] ]. + exfalso. + apply Hnval. rewrite <-Heq in Hval. + eapply ra_op_valid2, ra_op_valid, ra_op_valid; last eassumption; now apply _. + Qed. + End ViewShiftProps. End IRIS_VS_RULES. diff --git a/lib/ModuRes/BI.v b/lib/ModuRes/BI.v index 8c97a665e45c9e4391407db55c05c5d5576644ac..87d1927bebdd6551de14676d9272c585c45e0e87 100644 --- a/lib/ModuRes/BI.v +++ b/lib/ModuRes/BI.v @@ -156,26 +156,24 @@ Section UPredBI. Local Open Scope ra_scope. Local Obligation Tactic := intros; eauto with typeclass_instances. - Let pres := âºres. - (* Standard interpretations of propositional connectives. *) - Global Program Instance top_up : topBI (UPred pres) := up_cr (const True). - Global Program Instance bot_up : botBI (UPred pres) := up_cr (const False). + Global Program Instance top_up : topBI (UPred res) := up_cr (const True). + Global Program Instance bot_up : botBI (UPred res) := up_cr (const False). - Global Program Instance and_up : andBI (UPred pres) := + Global Program Instance and_up : andBI (UPred res) := fun P Q => mkUPred (fun n r => P n r /\ Q n r) _. Next Obligation. intros n m r1 r2 HLe HSub; rewrite HSub, HLe; tauto. Qed. - Global Program Instance or_up : orBI (UPred pres) := + Global Program Instance or_up : orBI (UPred res) := fun P Q => mkUPred (fun n r => P n r \/ Q n r) _. Next Obligation. intros n m r1 r2 HLe HSub; rewrite HSub, HLe; tauto. Qed. - Global Program Instance impl_up : implBI (UPred pres) := + Global Program Instance impl_up : implBI (UPred res) := fun P Q => mkUPred (fun n r => forall m r', m <= n -> r ⊑ r' -> P m r' -> Q m r') _. Next Obligation. @@ -184,13 +182,13 @@ Section UPredBI. Qed. (* BI connectives. *) - Global Program Instance sc_up : scBI (UPred pres) := + Global Program Instance sc_up : scBI (UPred res) := fun P Q => - mkUPred (fun n r => exists r1 r2, ra_proj r1 · ra_proj r2 == ra_proj r /\ P n r1 /\ Q n r2) _. + mkUPred (fun n r => exists r1 r2, r1 · r2 == r /\ P n r1 /\ Q n r2) _. Next Obligation. intros n m r1 r2 HLe [rd HEq] [r11 [r12 [HEq' [HP HQ]]]]. rewrite <- HEq', assoc in HEq; setoid_rewrite HLe. - exists↓ (rd · ra_proj r11) by auto_valid. + exists (rd · r11). exists r12. split; [|split;[|assumption] ]. - simpl. assumption. @@ -198,27 +196,27 @@ Section UPredBI. exists rd. reflexivity. Qed. - Global Program Instance si_up : siBI (UPred pres) := + Global Program Instance si_up : siBI (UPred res) := fun P Q => - mkUPred (fun n r => forall m r' rr, ra_proj r · ra_proj r' == ra_proj rr -> m <= n -> P m r' -> Q m rr) _. + mkUPred (fun n r => forall m r' rr, r · r' == rr -> m <= n -> P m r' -> Q m rr) _. Next Obligation. intros n m r1 r2 HLe [r12 HEq] HSI k r rr HEq' HSub HP. rewrite comm in HEq; rewrite <- HEq, <- assoc in HEq'. - pose↓ rc := (r12 · ra_proj r) by auto_valid. + pose (rc := (r12 · r)). eapply HSI with (r':=rc); [| etransitivity; eassumption |]. - simpl. assumption. - eapply uni_pred, HP; [reflexivity|]. exists r12. reflexivity. Qed. (* Quantifiers. *) - Global Program Instance all_up : allBI (UPred pres) := + Global Program Instance all_up : allBI (UPred res) := fun T eqT mT cmT R => mkUPred (fun n r => forall t, R t n r) _. Next Obligation. intros n m r1 r2 HLe HSub HR t; rewrite HLe, <- HSub; apply HR. Qed. - Global Program Instance xist_up : xistBI (UPred pres) := + Global Program Instance xist_up : xistBI (UPred res) := fun T eqT mT cmT R => mkUPred (fun n r => exists t, R t n r) _. Next Obligation. @@ -315,23 +313,23 @@ Section UPredBI. Existing Instance nonexp_type. - Global Instance all_up_equiv : Proper (equiv (A := V -n> UPred pres) ==> equiv) all. + Global Instance all_up_equiv : Proper (equiv (A := V -n> UPred res) ==> equiv) all. Proof. intros R1 R2 EQR n r; simpl. setoid_rewrite EQR; tauto. Qed. - Global Instance all_up_dist n : Proper (dist (T := V -n> UPred pres) n ==> dist n) all. + Global Instance all_up_dist n : Proper (dist (T := V -n> UPred res) n ==> dist n) all. Proof. intros R1 R2 EQR m r HLt; simpl. split; intros; apply EQR; now auto. Qed. - Global Instance xist_up_equiv : Proper (equiv (A := V -n> UPred pres) ==> equiv) xist. + Global Instance xist_up_equiv : Proper (equiv (A := V -n> UPred res) ==> equiv) xist. Proof. intros R1 R2 EQR n r; simpl. setoid_rewrite EQR; tauto. Qed. - Global Instance xist_up_dist n : Proper (dist (T := V -n> UPred pres)n ==> dist n) xist. + Global Instance xist_up_dist n : Proper (dist (T := V -n> UPred res)n ==> dist n) xist. Proof. intros R1 R2 EQR m r HLt; simpl. split; intros [t HR]; exists t; apply EQR; now auto. @@ -339,7 +337,7 @@ Section UPredBI. End Quantifiers. - Global Program Instance bi_up : ComplBI (UPred pres). + Global Program Instance bi_up : ComplBI (UPred res). Next Obligation. intros n r _; exact I. Qed. @@ -371,29 +369,27 @@ Section UPredBI. Qed. Next Obligation. intros P Q n r; simpl. - setoid_rewrite (comm (Commutative := ra_op_comm _)) at 1. - firstorder. + split; intros [r1 [r2 HPQ]]; exists r2 r1; rewrite comm; tauto. Qed. Next Obligation. intros P Q R n r; split. - intros [r1 [rr [EQr [HP [r2 [r3 [EQrr [HQ HR]]]]]]]]. rewrite <- EQrr, assoc in EQr. unfold sc. - exists↓ (ra_proj r1 · ra_proj r2) by auto_valid. + exists (r1 · r2). exists r3; split; [assumption | split; [| assumption] ]. exists r1 r2; split; [reflexivity | split; assumption]. - intros [rr [r3 [EQr [[r1 [r2 [EQrr [HP HQ]]]] HR]]]]. rewrite <- EQrr, <- assoc in EQr; clear EQrr. exists r1. - exists↓ (ra_proj r2 · ra_proj r3) by auto_valid. + exists (r2 · r3). split; [assumption | split; [assumption |] ]. exists r2 r3; split; [reflexivity | split; assumption]. Qed. Next Obligation. intros n r; split. - intros [r1 [r2 [EQr [_ HP]]]]. - eapply uni_pred, HP; [reflexivity|]. exists (ra_proj r1). assumption. - - intros HP. exists (ra_pos_unit (T:=res)) r. split; - [simpl; erewrite ra_op_unit by apply _; reflexivity |]. + eapply uni_pred, HP; [reflexivity|]. exists (r1). assumption. + - intros HP. exists (ra_unit res) r. split; [simpl; erewrite ra_op_unit by apply _; reflexivity |]. simpl; unfold const; tauto. Qed. Next Obligation. diff --git a/lib/ModuRes/RA.v b/lib/ModuRes/RA.v index 695fe2139e6aaea467aba5a4950cd7a37f0808b4..6a848f2801967fa40cf4aef83a1c77b297c50a9b 100644 --- a/lib/ModuRes/RA.v +++ b/lib/ModuRes/RA.v @@ -1,4 +1,4 @@ -(** Resource algebras: Commutative monoids with a decidable validity predicate. *) +(** Resource algebras: Commutative monoids with a validity predicate. *) Require Import Bool. Require Import Predom. @@ -120,105 +120,9 @@ Section ProductLemmas. End ProductLemmas. -Section PositiveCarrier. - Context {T} `{raT : RA T}. - - Definition ra_pos: Type := { t : T | ↓ t }. - Coercion ra_proj (r:ra_pos): T := proj1_sig r. - - Implicit Types (t u : T) (r : ra_pos). - - Global Instance ra_pos_type : Setoid ra_pos := _. - - Definition ra_mk_pos t {VAL: ↓ t}: ra_pos := exist _ t VAL. - - Program Definition ra_pos_unit: ra_pos := exist _ 1 _. - Next Obligation. - now eapply ra_valid_unit; apply _. - Qed. - - Lemma ra_proj_cancel t (VAL: ↓t): - ra_proj (ra_mk_pos t (VAL:=VAL)) = t. - Proof. - reflexivity. - Qed. - - Lemma ra_op_pos_valid t1 t2 r: - t1 · t2 == ra_proj r -> ↓ t1. - Proof. - destruct r as [t Hval]; simpl. intros Heq. rewrite <-Heq in Hval. - eapply ra_op_valid; eassumption. - Qed. - - Lemma ra_op_pos_valid2 t1 t2 r: - t1 · t2 == ra_proj r -> ↓ t2. - Proof. - rewrite comm. now eapply ra_op_pos_valid. - Qed. - - Lemma ra_pos_valid r: - ↓(ra_proj r). - Proof. - destruct r as [r VAL]. - exact VAL. - Qed. - -End PositiveCarrier. -Global Arguments ra_pos T {_}. -Notation "'âº' T" := (ra_pos T) (at level 75) : type_scope. - -(** Validity automation tactics *) -Ltac auto_valid_inner := - solve [ eapply ra_op_pos_valid; (eassumption || rewrite comm; eassumption) - | eapply ra_op_pos_valid2; (eassumption || rewrite comm; eassumption) - | eapply ra_op_valid; (eassumption || rewrite comm; eassumption) ]. -Ltac auto_valid := idtac; match goal with - | |- @ra_valid ?T _ _ => - let H := fresh in assert (H : RA T) by apply _; auto_valid_inner - end. - -(* FIXME put the common parts into a helper tactic, and allow arbitrary tactics after "by" *) -Ltac exists_valid t tac := let H := fresh "Hval" in assert(H:(↓t)%ra); [tac|exists (ra_mk_pos t (VAL:=H) ) ]. -Tactic Notation "exists↓" constr(t) := exists_valid t idtac. -Tactic Notation "exists↓" constr(t) "by" tactic(tac) := exists_valid t ltac:(now tac). - -Ltac pose_valid name t tac := let H := fresh "Hval" in assert(H:(↓t)%ra); [tac|pose (name := ra_mk_pos t (VAL:=H) ) ]. -Tactic Notation "pose↓" ident(name) ":=" constr(t) := pose_valid name t idtac. -Tactic Notation "pose↓" ident(name) ":=" constr(t) "by" tactic(tac) := pose_valid name t ltac:(now tac). - - Section Order. Context T `{raT : RA T}. - Implicit Types (t : T) (r s : ra_pos T). - - Definition pra_ord r1 r2 := - exists t, t · (ra_proj r1) == (ra_proj r2). - - Global Instance pra_ord_preo: PreOrder pra_ord. - Proof. - split. - - intros x; exists 1. simpl. erewrite ra_op_unit by apply _; reflexivity. - - intros z yz xyz [y Hyz] [x Hxyz]; unfold pra_ord. - rewrite <- Hyz, assoc in Hxyz; setoid_rewrite <- Hxyz. - exists (x · y). reflexivity. - Qed. - - Global Program Instance pRA_preo : preoType (ra_pos T) | 0 := mkPOType pra_ord. - - Global Instance equiv_pord_pra : Proper (equiv ==> equiv ==> equiv) (pord (T := ra_pos T)). - Proof. - intros s1 s2 EQs t1 t2 EQt; split; intros [s HS]. - - exists s; rewrite <- EQs, <- EQt; assumption. - - exists s; rewrite EQs, EQt; assumption. - Qed. - - Lemma unit_min r : ra_pos_unit ⊑ r. - Proof. - exists (ra_proj r). simpl. - now erewrite ra_op_unit2 by apply _. - Qed. - Definition ra_ord t1 t2 := exists t, t · t1 == t2. @@ -245,12 +149,10 @@ Section Order. rewrite <- assoc, (comm y), <- assoc, assoc, (comm y1), EQx, EQy; reflexivity. Qed. - Lemma ord_res_pres r s : - (r ⊑ s) <-> (ra_proj r ⊑ ra_proj s). + Lemma unit_min r : 1 ⊑ r. Proof. - split; intros HR. - - destruct HR as [d EQ]. exists d. assumption. - - destruct HR as [d EQ]. exists d. assumption. + exists r. simpl. + now erewrite ra_op_unit2 by apply _. Qed. End Order. diff --git a/world_prop.v b/world_prop.v index a6faa4534961f59b7a7050d668b3696708cf0d26..cce80cff1078f13ec0805ccc8584123895dc6418 100644 --- a/world_prop.v +++ b/world_prop.v @@ -6,8 +6,6 @@ Require Import ModuRes.RA ModuRes.UPred. (* This interface keeps some of the details of the solution opaque *) Module Type WORLD_PROP (Res : RA_T). - Definition pres := ra_pos Res.res. - (* PreProp: The solution to the recursive equation. Equipped with a discrete order. *) Parameter PreProp : cmtyp. Instance PProp_preo : preoType PreProp := disc_preo PreProp. @@ -16,7 +14,7 @@ Module Type WORLD_PROP (Res : RA_T). (* Defines Worlds, Propositions *) Definition Wld := nat -f> PreProp. - Definition Props := Wld -m> UPred pres. + Definition Props := Wld -m> UPred (Res.res). (* Define all the things on Props, so they have names - this shortens the terms later. *) Instance Props_ty : Setoid Props | 1 := _. diff --git a/world_prop_recdom.v b/world_prop_recdom.v index da2a1258913b24b260bd35b34e00ff49578ab1ff..5d67bb3d55e55adde8b4560184b5037fd5dbe5e2 100644 --- a/world_prop_recdom.v +++ b/world_prop_recdom.v @@ -7,9 +7,7 @@ Require Import world_prop. (* Now we come to the actual implementation *) Module WorldProp (Res : RA_T) : WORLD_PROP Res. - (** The construction is parametric in the monoid we choose *) - Definition pres := ra_pos Res.res. (** We need to build a functor that would describe the following recursive domain equation: @@ -25,7 +23,7 @@ Module WorldProp (Res : RA_T) : WORLD_PROP Res. Local Instance pcm_disc P `{cmetric P} : pcmType P | 2000 := disc_pcm P. Definition FProp P `{cmP : cmetric P} := - (nat -f> P) -m> UPred pres. + (nat -f> P) -m> UPred (Res.res). Context {U V} `{cmU : cmetric U} `{cmV : cmetric V}.