diff --git a/docs/constructions.tex b/docs/constructions.tex
index 679aeb00799b5f4b863dc61521e5666d7b98454a..e019b25cdfbf4eb6c7ef78bfdc6f7338e5533d2b 100644
--- a/docs/constructions.tex
+++ b/docs/constructions.tex
@@ -189,7 +189,8 @@ The first is trivial, the second follows from cancellativitiy of $M$.
 \label{sec:fpfunm}
 
 Given a countable set $X$ and a monoid $M$, we construct a monoid representing finite partial functions from $X$ to (non-unit, non-zero elements of) $M$.
-Let $\fpfunm{X}{M}$ be the product monoid $\prod_{x \in X} M$, as defined in \secref{sec:prodm} but restricting the carrier to functions $f$ where the set $\dom(f) \eqdef \{ x \mid f(x) \neq \munit_M \}$ is finite.
+\ralf{all outdated}
+Let ${X} \fpfn {M}$ be the product monoid $\prod_{x \in X} M$, as defined in \secref{sec:prodm} but restricting the carrier to functions $f$ where the set $\dom(f) \eqdef \{ x \mid f(x) \neq \munit_M \}$ is finite.
 This is well-defined as the set of these $f$ contains the unit and is closed under multiplication.
 (We identify finite partial functions from $X$ to $\mcarp{M}\setminus\{\munit_M\}$ and total functions from $X$ to $\mcarp{M}$ with finite $\munit_M$-support.)
 
@@ -303,7 +304,7 @@ Frame-preserving updates are also possible if we assume $M$ cancellative:
 By combining the fractional, finite partial function, and authoritative monoids, we construct two flavors of heaps with fractional permissions and mention their important frame-preserving updates.
 Hereinafter, we assume the set $\textdom{Val}$ of values is countable.
 
-Given a set $Y$, define $\FHeap(Y) \eqdef \fpfunm{\textdom{Val}}{\fracm{Y}}$ representing a fractional heap with codomain $Y$.
+Given a set $Y$, define $\FHeap(Y) \eqdef \textdom{Val} \fpfn \fracm(Y)$ representing a fractional heap with codomain $Y$.
 From \S\S\ref{sec:fracm} and~\ref{sec:fpfunm} we obtain the following frame-preserving updates as well as the fact that $\FHeap(Y)$ is cancellative.
 \begin{mathpar}
 	\axiomH{FHeapUpd}{h[x \mapsto (1, y)] \mupd h[x \mapsto (1, y')]} \and
diff --git a/docs/derived.tex b/docs/derived.tex
index 857f881c7a34a7113552d421b0ab6b87b6d1dcea..b907e7dea6b510cf9bf7273a270e0bcd2c618f32 100644
--- a/docs/derived.tex
+++ b/docs/derived.tex
@@ -5,7 +5,7 @@ In this section we describe some constructions that we will use throughout the r
 \subsection{Global monoid}
 
 Hereinafter we assume the global monoid (served up as a parameter to Iris) is obtained from a family of monoids $(M_i)_{i \in I}$ by first applying the construction for finite partial functions to each~(\Sref{sec:fpfunm}), and then applying the product construction~(\Sref{sec:prodm}):
-\[ M \eqdef \prod_{i \in I} \fpfunm{\textdom{GhName}}{M_i} \]
+\[ M \eqdef \prod_{i \in I} \textdom{GhName} \fpfn M_i \]
 We don't care so much about what concretely $\textdom{GhName}$ is, as long as it is countable and infinite.
 We write $\ownGhost{\gname}{\melt : M_i}$ (or just $\ownGhost{\gname}{\melt}$ if $M_i$ is clear from the context) for $\ownGGhost{[i \mapsto [\gname \mapsto \melt]]}$ when $\melt \in \mcarp {M_i}$, and for $\FALSE$ when $\melt = \mzero_{M_i}$.
 In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current state of monoid $M_i$, the name $\gname$ is allocated and has at least value $\melt$.
diff --git a/docs/setup.tex b/docs/setup.tex
index deb34faaf5f5c3878a19bc1beaff60b8c92f05a5..4b1af4b807d3981f898f84d213363b02e386b7da 100644
--- a/docs/setup.tex
+++ b/docs/setup.tex
@@ -434,20 +434,18 @@
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 %% Commonly used identifiers
-\newcommand{\FHeap}{\textsc{FHeap}}
-\newcommand{\AFHeap}{\textsc{AFHeap}}
+\newcommand{\FHeap}{\textmon{FHeap}}
+\newcommand{\AFHeap}{\textmon{AFHeap}}
 
-\newcommand{\auth}[1]{\ensuremath{\textsc{Auth}(#1)}}
+\newcommand{\auth}[1]{\textmon{Auth}}
 \newcommand{\authfull}{\mathord{\bullet}\,}
 \newcommand{\authfrag}{\mathord{\circ}\,}
 
-\newcommand{\fpfunm}[2]{\ensuremath{\textsc{FpFun}(#1, #2)}}
-\newcommand{\fracm}[1]{\ensuremath{\textsc{Frac}(#1)}}
-\newcommand{\exm}[1]{\ensuremath{\textsc{Ex}(#1)}}
-\newcommand{\agm}[1]{\ensuremath{\textsc{Ag}(#1)}}
+\newcommand{\fracm}{\ensuremath{\textmon{Frac}}}
+\newcommand{\exm}{\ensuremath{\textmon{Ex}}}
+\newcommand{\agm}{\ensuremath{\textmon{Ag}}}
 
-
-\newcommand{\STSMon}[1]{\textsc{Sts}_{#1}}
+\newcommand{\STSMon}[1]{\textmon{Sts}_{#1}}
 \newcommand{\STSInv}{\textsf{STSInv}}
 \newcommand{\STS}{\textsf{STS}}
 \newcommand{\STSS}{\mathcal{S}} % states