diff --git a/iris/model.v b/iris/model.v
new file mode 100644
index 0000000000000000000000000000000000000000..298efd34ca08a777933bb74deb94c4c111034e8b
--- /dev/null
+++ b/iris/model.v
@@ -0,0 +1,237 @@
+Require Export modures.logic modures.cmra.
+Require Export modures.fin_maps modures.agree modures.excl.
+Require Import modures.cofe_solver.
+
+(* Parameter *)
+Record iParam := IParam {
+  istate : Type;
+  icmra : cofeT → cmraT;
+  icmra_empty A : Empty (icmra A);
+  icmra_empty_spec A : RAIdentity (icmra A);
+  icmra_map {A B} (f : A -n> B) : icmra A -n> icmra B;
+  icmra_map_ne {A B} n : Proper (dist n ==> dist n) (@icmra_map A B);
+  icmra_map_id {A : cofeT} (x : icmra A) : icmra_map cid x ≡ x;
+  icmra_map_compose {A B C} (f : A -n> B) (g : B -n> C) x :
+    icmra_map (g ◎ f) x ≡ icmra_map g (icmra_map f x);
+  icmra_map_mono {A B} (f : A -n> B) : CMRAMonotone (icmra_map f)
+}.
+Existing Instances icmra_empty icmra_empty_spec icmra_map_ne icmra_map_mono.
+
+Lemma icmra_map_ext (Σ : iParam) {A B} (f g : A -n> B) m :
+  (∀ x, f x ≡ g x) → icmra_map Σ f m ≡ icmra_map Σ g m.
+Proof.
+  by intros ?; apply equiv_dist=> n; apply icmra_map_ne=> ?; apply equiv_dist.
+Qed.
+
+(* Resources *)
+Record res (Σ : iParam) (A : cofeT) := Res {
+  wld : gmap positive (agree (later A));
+  pst : excl (leibnizC (istate Σ));
+  gst : icmra Σ (laterC A);
+}.
+Add Printing Constructor res.
+Arguments Res {_ _} _ _ _.
+Arguments wld {_ _} _.
+Arguments pst {_ _} _.
+Arguments gst {_ _} _.
+Instance: Params (@Res) 2.
+Instance: Params (@wld) 2.
+Instance: Params (@pst) 2.
+Instance: Params (@gst) 2.
+
+Section res.
+Context (Σ : iParam) (A : cofeT).
+Implicit Types r : res Σ A.
+
+Instance res_equiv : Equiv (res Σ A) := λ r1 r2,
+  wld r1 ≡ wld r2 ∧ pst r1 ≡ pst r2 ∧ gst r1 ≡ gst r2.
+Instance res_dist : Dist (res Σ A) := λ n r1 r2,
+  wld r1 ={n}= wld r2 ∧ pst r1 ={n}= pst r2 ∧ gst r1 ={n}= gst r2.
+Global Instance Res_ne n :
+  Proper (dist n ==> dist n ==> dist n ==> dist n) (@Res Σ A).
+Proof. done. Qed.
+Global Instance Res_proper : Proper ((≡) ==> (≡) ==> (≡) ==> (≡)) (@Res Σ A).
+Proof. done. Qed.
+Global Instance wld_ne n : Proper (dist n ==> dist n) (@wld Σ A).
+Proof. by intros r1 r2 (?&?&?). Qed.
+Global Instance wld_proper : Proper ((≡) ==> (≡)) (@wld Σ A).
+Proof. by intros r1 r2 (?&?&?). Qed.
+Global Instance pst_ne n : Proper (dist n ==> dist n) (@pst Σ A).
+Proof. by intros r1 r2 (?&?&?). Qed.
+Global Instance pst_ne' n : Proper (dist (S n) ==> (≡)) (@pst Σ A).
+Proof.
+  intros σ σ' (_&?&_); apply (timeless _), dist_le with (S n); auto with lia.
+Qed.
+Global Instance pst_proper : Proper ((≡) ==> (≡)) (@pst Σ A).
+Proof. by intros r1 r2 (?&?&?). Qed.
+Global Instance gst_ne n : Proper (dist n ==> dist n) (@gst Σ A).
+Proof. by intros r1 r2 (?&?&?). Qed.
+Global Instance gst_proper : Proper ((≡) ==> (≡)) (@gst Σ A).
+Proof. by intros r1 r2 (?&?&?). Qed.
+Instance res_compl : Compl (res Σ A) := λ c,
+  Res (compl (chain_map wld c))
+      (compl (chain_map pst c)) (compl (chain_map gst c)).
+Definition res_cofe_mixin : CofeMixin (res Σ A).
+Proof.
+  split.
+  * intros w1 w2; unfold equiv, res_equiv, dist, res_dist.
+    rewrite !equiv_dist; naive_solver.
+  * intros n; split.
+    + done.
+    + by intros ?? (?&?&?); split_ands'.
+    + intros ??? (?&?&?) (?&?&?); split_ands'; etransitivity; eauto.
+  * by intros n ?? (?&?&?); split_ands'; apply dist_S.
+  * done.
+  * intros c n; split_ands'.
+    + apply (conv_compl (chain_map wld c) n).
+    + apply (conv_compl (chain_map pst c) n).
+    + apply (conv_compl (chain_map gst c) n).
+Qed.
+Canonical Structure resC : cofeT := CofeT res_cofe_mixin.
+Global Instance res_timeless r :
+  Timeless (wld r) → Timeless (gst r) → Timeless r.
+Proof. by intros ??? (?&?&?); split_ands'; try apply (timeless _). Qed.
+
+Instance res_op : Op (res Σ A) := λ r1 r2,
+  Res (wld r1 â‹… wld r2) (pst r1 â‹… pst r2) (gst r1 â‹… gst r2).
+Global Instance res_empty : Empty (res Σ A) := Res ∅ ∅ ∅.
+Instance res_unit : Unit (res Σ A) := λ r,
+  Res (unit (wld r)) (unit (pst r)) (unit (gst r)).
+Instance res_valid : Valid (res Σ A) := λ r,
+  ✓ (wld r) ∧ ✓ (pst r) ∧ ✓ (gst r).
+Instance res_validN : ValidN (res Σ A) := λ n r,
+  ✓{n} (wld r) ∧ ✓{n} (pst r) ∧ ✓{n} (gst r).
+Instance res_minus : Minus (res Σ A) := λ r1 r2,
+  Res (wld r1 ⩪ wld r2) (pst r1 ⩪ pst r2) (gst r1 ⩪ gst r2).
+Lemma res_included (r1 r2 : res Σ A) :
+  r1 ≼ r2 ↔ wld r1 ≼ wld r2 ∧ pst r1 ≼ pst r2 ∧ gst r1 ≼ gst r2.
+Proof.
+  split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)].
+  intros [r Hr]; split_ands;
+    [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr.
+Qed.
+Lemma res_includedN (r1 r2 : res Σ A) n :
+  r1 ≼{n} r2 ↔ wld r1 ≼{n} wld r2 ∧ pst r1 ≼{n} pst r2 ∧ gst r1 ≼{n} gst r2.
+Proof.
+  split; [|by intros ([w ?]&[σ ?]&[m ?]); exists (Res w σ m)].
+  intros [r Hr]; split_ands;
+    [exists (wld r)|exists (pst r)|exists (gst r)]; apply Hr.
+Qed.
+Definition res_cmra_mixin : CMRAMixin (res Σ A).
+Proof.
+  split.
+  * by intros n x [???] ? (?&?&?); split_ands'; simpl in *; cofe_subst.
+  * by intros n [???] ? (?&?&?); split_ands'; simpl in *; cofe_subst.
+  * by intros n [???] ? (?&?&?) (?&?&?); split_ands'; simpl in *; cofe_subst.
+  * by intros n [???] ? (?&?&?) [???] ? (?&?&?);
+      split_ands'; simpl in *; cofe_subst.
+  * done.
+  * by intros n ? (?&?&?); split_ands'; apply cmra_valid_S.
+  * intros r; unfold valid, res_valid, validN, res_validN.
+    rewrite !cmra_valid_validN; naive_solver.
+  * intros ???; split_ands'; simpl; apply (associative _).
+  * intros ??; split_ands'; simpl; apply (commutative _).
+  * intros ?; split_ands'; simpl; apply ra_unit_l.
+  * intros ?; split_ands'; simpl; apply ra_unit_idempotent.
+  * intros n r1 r2; rewrite !res_includedN.
+    by intros (?&?&?); split_ands'; apply cmra_unit_preserving.
+  * intros n r1 r2 (?&?&?);
+      split_ands'; simpl in *; eapply cmra_valid_op_l; eauto.
+  * intros n r1 r2; rewrite res_includedN; intros (?&?&?).
+    by split_ands'; apply cmra_op_minus.
+Qed.
+Global Instance res_ra_empty : RAIdentity (res Σ A).
+Proof.
+  by repeat split; simpl; repeat apply ra_empty_valid; rewrite (left_id _ _).
+Qed.
+
+Definition res_cmra_extend_mixin : CMRAExtendMixin (res Σ A).
+Proof.
+  intros n r r1 r2 (?&?&?) (?&?&?); simpl in *.
+  destruct (cmra_extend_op n (wld r) (wld r1) (wld r2)) as ([w w']&?&?&?),
+    (cmra_extend_op n (pst r) (pst r1) (pst r2)) as ([σ σ']&?&?&?),
+    (cmra_extend_op n (gst r) (gst r1) (gst r2)) as ([m m']&?&?&?); auto.
+  by exists (Res w σ m, Res w' σ' m').
+Qed.
+Canonical Structure resRA : cmraT :=
+  CMRAT res_cofe_mixin res_cmra_mixin res_cmra_extend_mixin.
+Lemma Res_op w1 w2 σ1 σ2 m1 m2 :
+  Res w1 σ1 m1 ⋅ Res w2 σ2 m2 = Res (w1 ⋅ w2) (σ1 ⋅ σ2) (m1 ⋅ m2).
+Proof. done. Qed.
+Lemma Res_unit w σ m : unit (Res w σ m) = Res (unit w) (unit σ) (unit m).
+Proof. done. Qed.
+End res.
+
+Definition res_map {Σ A B} (f : A -n> B) (r : res Σ A) : res Σ B :=
+  Res (agree_map (later_map f) <$> (wld r))
+      (pst r)
+      (icmra_map Σ (laterC_map f) (gst r)).
+Instance res_map_ne Σ (A B : cofeT) (f : A -n> B) :
+  (∀ n, Proper (dist n ==> dist n) f) →
+  ∀ n, Proper (dist n ==> dist n) (@res_map Σ _ _ f).
+Proof. by intros Hf n [] ? (?&?&?); split_ands'; simpl in *; cofe_subst. Qed.
+Lemma res_map_id {Σ A} (r : res Σ A) : res_map cid r ≡ r.
+Proof.
+  split_ands'; simpl; [|done|].
+  * rewrite -{2}(map_fmap_id (wld r)); apply map_fmap_setoid_ext=> i y ? /=.
+    rewrite -{2}(agree_map_id y); apply agree_map_ext=> y' /=.
+    by rewrite later_map_id.
+  * rewrite -{2}(icmra_map_id Σ (gst r)); apply icmra_map_ext=> m /=.
+    by rewrite later_map_id.
+Qed.
+Lemma res_map_compose {Σ A B C} (f : A -n> B) (g : B -n> C) (r : res Σ A) :
+  res_map (g ◎ f) r ≡ res_map g (res_map f r).
+Proof.
+  split_ands'; simpl; [|done|].
+  * rewrite -map_fmap_compose; apply map_fmap_setoid_ext=> i y _ /=.
+    rewrite -agree_map_compose; apply agree_map_ext=> y' /=.
+    by rewrite later_map_compose.
+  * rewrite -icmra_map_compose; apply icmra_map_ext=> m /=.
+    by rewrite later_map_compose.
+Qed.
+Definition resRA_map {Σ A B} (f : A -n> B) : resRA Σ A -n> resRA Σ B :=
+  CofeMor (res_map f : resRA Σ A → resRA Σ B).
+Instance res_map_cmra_monotone {Σ} {A B : cofeT} (f : A -n> B) :
+  CMRAMonotone (@res_map Σ _ _ f).
+Proof.
+  split.
+  * by intros n r1 r2; rewrite !res_includedN;
+      intros (?&?&?); split_ands'; simpl; try apply includedN_preserving.
+  * by intros n r (?&?&?); split_ands'; simpl; try apply validN_preserving.
+Qed.
+Instance resRA_map_contractive {Σ A B} : Contractive (@resRA_map Σ A B).
+Proof.
+  intros n f g ? r; split_ands'; simpl; [|done|].
+  * by apply (mapRA_map_ne _ (agreeRA_map (laterC_map f))
+      (agreeRA_map (laterC_map g))), agreeRA_map_ne, laterC_map_contractive.
+  * by apply icmra_map_ne, laterC_map_contractive.
+Qed.
+
+(* Functor for the solution *)
+Module iProp.
+Definition F (Σ : iParam) (A B : cofeT) : cofeT := uPredC (resRA Σ A).
+Definition map {Σ : iParam} {A1 A2 B1 B2 : cofeT}
+    (f : (A2 -n> A1) * (B1 -n> B2)) : F Σ A1 B1 -n> F Σ A2 B2 :=
+  uPredC_map (resRA_map (f.1)).
+Definition result Σ : solution (F Σ).
+Proof.
+  apply (solver.result _ (@map Σ)).
+  * by intros A B r n ?; rewrite /= res_map_id.
+  * by intros A1 A2 A3 B1 B2 B3 f g f' g' P r n ?; rewrite /= res_map_compose.
+  * by intros A1 A2 B1 B2 n f f' [??] r;
+      apply upredC_map_ne, resRA_map_contractive.
+Qed.
+End iProp.
+
+(* Solution *)
+Definition iPreProp (Σ : iParam) : cofeT := iProp.result Σ.
+Notation res' Σ := (resRA Σ (iPreProp Σ)).
+Notation icmra' Σ := (icmra Σ (laterC (iPreProp Σ))).
+Definition iProp (Σ : iParam) : cofeT := uPredC (resRA Σ (iPreProp Σ)).
+Definition iProp_unfold {Σ} : iProp Σ -n> iPreProp Σ := solution_fold _.
+Definition iProp_fold {Σ} : iPreProp Σ -n> iProp Σ := solution_unfold _.
+Lemma iProp_fold_unfold {Σ} (P : iProp Σ) : iProp_fold (iProp_unfold P) ≡ P.
+Proof. apply solution_unfold_fold. Qed.
+Lemma iProp_unfold_fold {Σ} (P : iPreProp Σ) : iProp_unfold (iProp_fold P) ≡ P.
+Proof. apply solution_fold_unfold. Qed.
+Bind Scope uPred_scope with iProp.