From a8591b70819f987a064faa12d266aeb577082cd7 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Wed, 17 Feb 2016 00:46:40 +0100 Subject: [PATCH] =?UTF-8?q?Use=20{[=5F=20:=3D=20=5F]}=20for=20singleton=20?= =?UTF-8?q?map=20so=20we=20can=20use=20=E2=86=A6=20for=20maps=20to.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit The singleton maps notation is now also more consistent with the insert <[_ := _]> _ notation for maps. --- algebra/cmra_big_op.v | 2 +- algebra/fin_maps.v | 28 +++++++-------- algebra/upred_big_op.v | 2 +- barrier/barrier.v | 2 +- heap_lang/heap.v | 29 ++++++++------- prelude/base.v | 3 +- prelude/fin_map_dom.v | 4 +-- prelude/fin_maps.v | 64 ++++++++++++++++----------------- prelude/hashset.v | 2 +- prelude/mapset.v | 2 +- program_logic/ghost_ownership.v | 2 +- program_logic/ownership.v | 3 +- program_logic/pviewshifts.v | 2 +- program_logic/wsat.v | 2 +- 14 files changed, 72 insertions(+), 75 deletions(-) diff --git a/algebra/cmra_big_op.v b/algebra/cmra_big_op.v index 6c6da1654..4740440b3 100644 --- a/algebra/cmra_big_op.v +++ b/algebra/cmra_big_op.v @@ -55,7 +55,7 @@ Lemma big_opM_delete (m : M A) i x : Proof. intros. by rewrite -{2}(insert_delete m i x) // big_opM_insert ?lookup_delete. Qed. -Lemma big_opM_singleton i x : big_opM ({[i ↦ x]} : M A) ≡ x. +Lemma big_opM_singleton i x : big_opM ({[i := x]} : M A) ≡ x. Proof. rewrite -insert_empty big_opM_insert /=; last auto using lookup_empty. by rewrite big_opM_empty right_id. diff --git a/algebra/fin_maps.v b/algebra/fin_maps.v index c9971cc93..b3cfb69eb 100644 --- a/algebra/fin_maps.v +++ b/algebra/fin_maps.v @@ -84,7 +84,7 @@ Proof. by apply (timeless _); rewrite -Hm lookup_insert_ne. Qed. Global Instance map_singleton_timeless i x : - Timeless x → Timeless ({[ i ↦ x ]} : gmap K A) := _. + Timeless x → Timeless ({[ i := x ]} : gmap K A) := _. End cofe. Arguments mapC _ {_ _} _. @@ -196,16 +196,16 @@ Lemma map_insert_validN n m i x : ✓{n} x → ✓{n} m → ✓{n} <[i:=x]>m. Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_equality. Qed. Lemma map_insert_valid m i x : ✓ x → ✓ m → ✓ <[i:=x]>m. Proof. intros ?? n j; apply map_insert_validN; auto. Qed. -Lemma map_singleton_validN n i x : ✓{n} ({[ i ↦ x ]} : gmap K A) ↔ ✓{n} x. +Lemma map_singleton_validN n i x : ✓{n} ({[ i := x ]} : gmap K A) ↔ ✓{n} x. Proof. split; [|by intros; apply map_insert_validN, cmra_empty_valid]. by move=>/(_ i); simplify_map_equality. Qed. -Lemma map_singleton_valid i x : ✓ ({[ i ↦ x ]} : gmap K A) ↔ ✓ x. +Lemma map_singleton_valid i x : ✓ ({[ i := x ]} : gmap K A) ↔ ✓ x. Proof. split; intros ? n; eapply map_singleton_validN; eauto. Qed. Lemma map_insert_singleton_opN n m i x : - m !! i = None ∨ m !! i ≡{n}≡ Some (unit x) → <[i:=x]> m ≡{n}≡ {[ i ↦ x ]} ⋅ m. + m !! i = None ∨ m !! i ≡{n}≡ Some (unit x) → <[i:=x]> m ≡{n}≡ {[ i := x ]} ⋅ m. Proof. intros Hi j; destruct (decide (i = j)) as [->|]; [|by rewrite lookup_op lookup_insert_ne // lookup_singleton_ne // left_id]. @@ -213,20 +213,20 @@ Proof. by destruct Hi as [->| ->]; constructor; rewrite ?cmra_unit_r. Qed. Lemma map_insert_singleton_op m i x : - m !! i = None ∨ m !! i ≡ Some (unit x) → <[i:=x]> m ≡ {[ i ↦ x ]} ⋅ m. + m !! i = None ∨ m !! i ≡ Some (unit x) → <[i:=x]> m ≡ {[ i := x ]} ⋅ m. Proof. rewrite !equiv_dist; naive_solver eauto using map_insert_singleton_opN. Qed. Lemma map_unit_singleton (i : K) (x : A) : - unit ({[ i ↦ x ]} : gmap K A) = {[ i ↦ unit x ]}. + unit ({[ i := x ]} : gmap K A) = {[ i := unit x ]}. Proof. apply map_fmap_singleton. Qed. Lemma map_op_singleton (i : K) (x y : A) : - {[ i ↦ x ]} ⋅ {[ i ↦ y ]} = ({[ i ↦ x ⋅ y ]} : gmap K A). + {[ i := x ]} ⋅ {[ i := y ]} = ({[ i := x ⋅ y ]} : gmap K A). Proof. by apply (merge_singleton _ _ _ x y). Qed. Lemma singleton_includedN n m i x : - {[ i ↦ x ]} ≼{n} m ↔ ∃ y, m !! i ≡{n}≡ Some y ∧ x ≼ y. + {[ i := x ]} ≼{n} m ↔ ∃ y, m !! i ≡{n}≡ Some y ∧ x ≼ y. (* not m !! i = Some y ∧ x ≼{n} y to deal with n = 0 *) Proof. split. @@ -264,23 +264,23 @@ Proof. Qed. Lemma map_singleton_updateP (P : A → Prop) (Q : gmap K A → Prop) i x : - x ~~>: P → (∀ y, P y → Q {[ i ↦ y ]}) → {[ i ↦ x ]} ~~>: Q. + x ~~>: P → (∀ y, P y → Q {[ i := y ]}) → {[ i := x ]} ~~>: Q. Proof. apply map_insert_updateP. Qed. Lemma map_singleton_updateP' (P : A → Prop) i x : - x ~~>: P → {[ i ↦ x ]} ~~>: λ m, ∃ y, m = {[ i ↦ y ]} ∧ P y. + x ~~>: P → {[ i := x ]} ~~>: λ m, ∃ y, m = {[ i := y ]} ∧ P y. Proof. apply map_insert_updateP'. Qed. -Lemma map_singleton_update i (x y : A) : x ~~> y → {[ i ↦ x ]} ~~> {[ i ↦ y ]}. +Lemma map_singleton_update i (x y : A) : x ~~> y → {[ i := x ]} ~~> {[ i := y ]}. Proof. apply map_insert_update. Qed. Lemma map_singleton_updateP_empty `{Empty A, !CMRAIdentity A} (P : A → Prop) (Q : gmap K A → Prop) i : - ∅ ~~>: P → (∀ y, P y → Q {[ i ↦ y ]}) → ∅ ~~>: Q. + ∅ ~~>: P → (∀ y, P y → Q {[ i := y ]}) → ∅ ~~>: Q. Proof. intros Hx HQ gf n Hg. destruct (Hx (from_option ∅ (gf !! i)) n) as (y&?&Hy). { move:(Hg i). rewrite !left_id. case _: (gf !! i); simpl; auto using cmra_empty_valid. } - exists {[ i ↦ y ]}; split; first by auto. + exists {[ i := y ]}; split; first by auto. intros i'; destruct (decide (i' = i)) as [->|]. - rewrite lookup_op lookup_singleton. move:Hy; case _: (gf !! i); first done. @@ -288,7 +288,7 @@ Proof. - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id. Qed. Lemma map_singleton_updateP_empty' `{Empty A, !CMRAIdentity A} (P: A → Prop) i : - ∅ ~~>: P → ∅ ~~>: λ m, ∃ y, m = {[ i ↦ y ]} ∧ P y. + ∅ ~~>: P → ∅ ~~>: λ m, ∃ y, m = {[ i := y ]} ∧ P y. Proof. eauto using map_singleton_updateP_empty. Qed. Section freshness. diff --git a/algebra/upred_big_op.v b/algebra/upred_big_op.v index 25d744197..05310f67e 100644 --- a/algebra/upred_big_op.v +++ b/algebra/upred_big_op.v @@ -77,7 +77,7 @@ Section fin_map. Proof. intros ?; by rewrite /uPred_big_sep /uPred_big_sepM map_to_list_insert. Qed. - Lemma big_sepM_singleton i x : (Π★{map {[i ↦ x]}} P)%I ≡ (P i x)%I. + Lemma big_sepM_singleton i x : (Π★{map {[i := x]}} P)%I ≡ (P i x)%I. Proof. rewrite -insert_empty big_sepM_insert/=; last auto using lookup_empty. by rewrite big_sepM_empty right_id. diff --git a/barrier/barrier.v b/barrier/barrier.v index f6f4ff826..aae49ccac 100644 --- a/barrier/barrier.v +++ b/barrier/barrier.v @@ -116,7 +116,7 @@ Section proof. Local Notation state_to_val s := (match s with State Low _ => 0 | State High _ => 1 end). Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp := - (l !=> '(state_to_val s) ★ + (l ↦ '(state_to_val s) ★ match s with State Low I' => waiting P I' | State High I' => ress I' end )%I. diff --git a/heap_lang/heap.v b/heap_lang/heap.v index e43497074..bc1a843d4 100644 --- a/heap_lang/heap.v +++ b/heap_lang/heap.v @@ -20,14 +20,13 @@ Definition to_heap : state → heapRA := fmap Excl. Definition of_heap : heapRA → state := omap (maybe Excl). Definition heap_mapsto `{heapG Σ} (l : loc) (v: val) : iPropG heap_lang Σ := - auth_own heap_name {[ l ↦ Excl v ]}. + auth_own heap_name {[ l := Excl v ]}. Definition heap_inv `{i : heapG Σ} (h : heapRA) : iPropG heap_lang Σ := ownP (of_heap h). Definition heap_ctx `{i : heapG Σ} (N : namespace) : iPropG heap_lang Σ := auth_ctx heap_name N heap_inv. -(* FIXME: ↦ is already used for the singleton empty map. Resolve that... *) -Notation "l !=> v" := (heap_mapsto l v) (at level 20) : uPred_scope. +Notation "l ↦ v" := (heap_mapsto l v) (at level 20) : uPred_scope. Section heap. Context {Σ : iFunctorG}. @@ -56,7 +55,7 @@ Section heap. by case: (h !! l)=> [[]|]; auto. Qed. Lemma heap_singleton_inv_l h l v : - ✓ ({[l ↦ Excl v]} ⋅ h) → h !! l = None ∨ h !! l ≡ Some ExclUnit. + ✓ ({[l := Excl v]} ⋅ h) → h !! l = None ∨ h !! l ≡ Some ExclUnit. Proof. move=> /(_ O l). rewrite lookup_op lookup_singleton. by case: (h !! l)=> [[]|]; auto. @@ -86,7 +85,7 @@ Section heap. Proof. intros h1 h2. by fold_leibniz=> ->. Qed. (** General properties of mapsto *) - Lemma heap_mapsto_disjoint l v1 v2 : (l !=> v1 ★ l !=> v2)%I ⊑ False. + Lemma heap_mapsto_disjoint l v1 v2 : (l ↦ v1 ★ l ↦ v2)%I ⊑ False. Proof. rewrite /heap_mapsto -auto_own_op auto_own_valid map_op_singleton. rewrite map_validI (forall_elim l) lookup_singleton. @@ -97,7 +96,7 @@ Section heap. Lemma wp_alloc N E e v P Q : to_val e = Some v → nclose N ⊆ E → P ⊑ heap_ctx N → - P ⊑ (▷ ∀ l, l !=> v -★ Q (LocV l)) → + P ⊑ (▷ ∀ l, l ↦ v -★ Q (LocV l)) → P ⊑ wp E (Alloc e) Q. Proof. rewrite /heap_ctx /heap_inv /heap_mapsto=> ?? Hctx HP. @@ -112,7 +111,7 @@ Section heap. apply sep_mono_r; rewrite HP; apply later_mono. apply forall_mono=> l; apply wand_intro_l. rewrite always_and_sep_l -assoc; apply const_elim_sep_l=> ?. - rewrite -(exist_intro (op {[ l ↦ Excl v ]})). + rewrite -(exist_intro (op {[ l := Excl v ]})). repeat erewrite <-exist_intro by apply _; simpl. rewrite -of_heap_insert left_id right_id !assoc. apply sep_mono_l. @@ -124,12 +123,12 @@ Section heap. Lemma wp_load N E l v P Q : nclose N ⊆ E → P ⊑ heap_ctx N → - P ⊑ (▷ l !=> v ★ ▷ (l !=> v -★ Q v)) → + P ⊑ (▷ l ↦ v ★ ▷ (l ↦ v -★ Q v)) → P ⊑ wp E (Load (Loc l)) Q. Proof. rewrite /heap_ctx /heap_inv /heap_mapsto=>HN ? HPQ. apply (auth_fsa' heap_inv (wp_fsa _) id) - with N heap_name {[ l ↦ Excl v ]}; simpl; eauto with I. + with N heap_name {[ l := Excl v ]}; simpl; eauto with I. rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. rewrite -assoc; apply const_elim_sep_l=> ?. rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs. @@ -143,12 +142,12 @@ Section heap. Lemma wp_store N E l v' e v P Q : to_val e = Some v → nclose N ⊆ E → P ⊑ heap_ctx N → - P ⊑ (▷ l !=> v' ★ ▷ (l !=> v -★ Q (LitV LitUnit))) → + P ⊑ (▷ l ↦ v' ★ ▷ (l ↦ v -★ Q (LitV LitUnit))) → P ⊑ wp E (Store (Loc l) e) Q. Proof. rewrite /heap_ctx /heap_inv /heap_mapsto=>? HN ? HPQ. apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v) l)) - with N heap_name {[ l ↦ Excl v' ]}; simpl; eauto with I. + with N heap_name {[ l := Excl v' ]}; simpl; eauto with I. rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. rewrite -assoc; apply const_elim_sep_l=> ?. rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs. @@ -164,12 +163,12 @@ Section heap. to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠v1 → nclose N ⊆ E → P ⊑ heap_ctx N → - P ⊑ (▷ l !=> v' ★ ▷ (l !=> v' -★ Q (LitV (LitBool false)))) → + P ⊑ (▷ l ↦ v' ★ ▷ (l ↦ v' -★ Q (LitV (LitBool false)))) → P ⊑ wp E (Cas (Loc l) e1 e2) Q. Proof. rewrite /heap_ctx /heap_inv /heap_mapsto=>??? HN ? HPQ. apply (auth_fsa' heap_inv (wp_fsa _) id) - with N heap_name {[ l ↦ Excl v' ]}; simpl; eauto 10 with I. + with N heap_name {[ l := Excl v' ]}; simpl; eauto 10 with I. rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. rewrite -assoc; apply const_elim_sep_l=> ?. rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs. @@ -184,12 +183,12 @@ Section heap. to_val e1 = Some v1 → to_val e2 = Some v2 → nclose N ⊆ E → P ⊑ heap_ctx N → - P ⊑ (▷ l !=> v1 ★ ▷ (l !=> v2 -★ Q (LitV (LitBool true)))) → + P ⊑ (▷ l ↦ v1 ★ ▷ (l ↦ v2 -★ Q (LitV (LitBool true)))) → P ⊑ wp E (Cas (Loc l) e1 e2) Q. Proof. rewrite /heap_ctx /heap_inv /heap_mapsto=> ?? HN ? HPQ. apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v2) l)) - with N heap_name {[ l ↦ Excl v1 ]}; simpl; eauto 10 with I. + with N heap_name {[ l := Excl v1 ]}; simpl; eauto 10 with I. rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. rewrite -assoc; apply const_elim_sep_l=> ?. rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs. diff --git a/prelude/base.v b/prelude/base.v index 08e1f021e..41fb9c5b9 100644 --- a/prelude/base.v +++ b/prelude/base.v @@ -433,7 +433,7 @@ Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch. (** The singleton map *) Class SingletonM K A M := singletonM: K → A → M. Instance: Params (@singletonM) 5. -Notation "{[ x ↦ y ]}" := (singletonM x y) (at level 1) : C_scope. +Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : C_scope. (** The function insert [<[k:=a]>m] should update the element at key [k] with value [a] in [m]. *) @@ -628,7 +628,6 @@ Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := { (** ** Axiomatization of collections *) (** The class [SimpleCollection A C] axiomatizes a collection of type [C] with elements of type [A]. *) -Instance: Params (@map) 3. Class SimpleCollection A C `{ElemOf A C, Empty C, Singleton A C, Union C} : Prop := { not_elem_of_empty (x : A) : x ∉ ∅; diff --git a/prelude/fin_map_dom.v b/prelude/fin_map_dom.v index 66e2da568..76b90521f 100644 --- a/prelude/fin_map_dom.v +++ b/prelude/fin_map_dom.v @@ -61,7 +61,7 @@ Proof. rewrite (dom_insert _). solve_elem_of. Qed. Lemma dom_insert_subseteq_compat_l {A} (m : M A) i x X : X ⊆ dom D m → X ⊆ dom D (<[i:=x]>m). Proof. intros. transitivity (dom D m); eauto using dom_insert_subseteq. Qed. -Lemma dom_singleton {A} (i : K) (x : A) : dom D {[i ↦ x]} ≡ {[ i ]}. +Lemma dom_singleton {A} (i : K) (x : A) : dom D {[i := x]} ≡ {[ i ]}. Proof. rewrite <-insert_empty, dom_insert, dom_empty; solve_elem_of. Qed. Lemma dom_delete {A} (m : M A) i : dom D (delete i m) ≡ dom D m ∖ {[ i ]}. Proof. @@ -123,7 +123,7 @@ Lemma dom_alter_L {A} f (m : M A) i : dom D (alter f i m) = dom D m. Proof. unfold_leibniz; apply dom_alter. Qed. Lemma dom_insert_L {A} (m : M A) i x : dom D (<[i:=x]>m) = {[ i ]} ∪ dom D m. Proof. unfold_leibniz; apply dom_insert. Qed. -Lemma dom_singleton_L {A} (i : K) (x : A) : dom D {[i ↦ x]} = {[ i ]}. +Lemma dom_singleton_L {A} (i : K) (x : A) : dom D {[i := x]} = {[ i ]}. Proof. unfold_leibniz; apply dom_singleton. Qed. Lemma dom_delete_L {A} (m : M A) i : dom D (delete i m) = dom D m ∖ {[ i ]}. Proof. unfold_leibniz; apply dom_delete. Qed. diff --git a/prelude/fin_maps.v b/prelude/fin_maps.v index 5aee3f6c1..bf5d5d49e 100644 --- a/prelude/fin_maps.v +++ b/prelude/fin_maps.v @@ -348,7 +348,7 @@ Proof. Qed. Lemma delete_empty {A} i : delete i (∅ : M A) = ∅. Proof. rewrite <-(partial_alter_self ∅) at 2. by rewrite lookup_empty. Qed. -Lemma delete_singleton {A} i (x : A) : delete i {[i ↦ x]} = ∅. +Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ∅. Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed. Lemma delete_commute {A} (m : M A) i j : delete i (delete j m) = delete j (delete i m). @@ -482,39 +482,39 @@ Proof. * eauto using insert_delete_subset. * by rewrite lookup_delete. Qed. -Lemma insert_empty {A} i (x : A) : <[i:=x]>∅ = {[i ↦ x]}. +Lemma insert_empty {A} i (x : A) : <[i:=x]>∅ = {[i := x]}. Proof. done. Qed. (** ** Properties of the singleton maps *) Lemma lookup_singleton_Some {A} i j (x y : A) : - {[i ↦ x]} !! j = Some y ↔ i = j ∧ x = y. + {[i := x]} !! j = Some y ↔ i = j ∧ x = y. Proof. rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence. Qed. -Lemma lookup_singleton_None {A} i j (x : A) : {[i ↦ x]} !! j = None ↔ i ≠j. +Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None ↔ i ≠j. Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed. -Lemma lookup_singleton {A} i (x : A) : {[i ↦ x]} !! i = Some x. +Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x. Proof. by rewrite lookup_singleton_Some. Qed. -Lemma lookup_singleton_ne {A} i j (x : A) : i ≠j → {[i ↦ x]} !! j = None. +Lemma lookup_singleton_ne {A} i j (x : A) : i ≠j → {[i := x]} !! j = None. Proof. by rewrite lookup_singleton_None. Qed. -Lemma map_non_empty_singleton {A} i (x : A) : {[i ↦ x]} ≠∅. +Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]} ≠∅. Proof. intros Hix. apply (f_equal (!! i)) in Hix. by rewrite lookup_empty, lookup_singleton in Hix. Qed. -Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i ↦ x]} = {[i ↦ y]}. +Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}. Proof. unfold singletonM, map_singleton, insert, map_insert. by rewrite <-partial_alter_compose. Qed. -Lemma alter_singleton {A} (f : A → A) i x : alter f i {[i ↦ x]} = {[i ↦ f x]}. +Lemma alter_singleton {A} (f : A → A) i x : alter f i {[i := x]} = {[i := f x]}. Proof. intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?]. * by rewrite lookup_alter, !lookup_singleton. * by rewrite lookup_alter_ne, !lookup_singleton_ne. Qed. Lemma alter_singleton_ne {A} (f : A → A) i j x : - i ≠j → alter f i {[j ↦ x]} = {[j ↦ x]}. + i ≠j → alter f i {[j := x]} = {[j := x]}. Proof. intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?]; rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done. @@ -538,12 +538,12 @@ Proof. * by rewrite lookup_omap, !lookup_insert. * by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done. Qed. -Lemma map_fmap_singleton {A B} (f : A → B) i x : f <$> {[i ↦ x]} = {[i ↦ f x]}. +Lemma map_fmap_singleton {A B} (f : A → B) i x : f <$> {[i := x]} = {[i := f x]}. Proof. by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty. Qed. Lemma omap_singleton {A B} (f : A → option B) i x y : - f x = Some y → omap f {[ i ↦ x ]} = {[ i ↦ y ]}. + f x = Some y → omap f {[ i := x ]} = {[ i := y ]}. Proof. intros. unfold singletonM, map_singleton. by erewrite omap_insert, omap_empty by eauto. @@ -898,7 +898,7 @@ Lemma insert_merge m1 m2 i x y z : <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2). Proof. by intros; apply partial_alter_merge. Qed. Lemma merge_singleton i x y z : - f (Some y) (Some z) = Some x → merge f {[i ↦ y]} {[i ↦ z]} = {[i ↦ x]}. + f (Some y) (Some z) = Some x → merge f {[i := y]} {[i := z]} = {[i := x]}. Proof. intros. by erewrite <-!insert_empty, <-insert_merge, merge_empty by eauto. Qed. @@ -1000,23 +1000,23 @@ Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed. Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x: m1 ⊥ₘ m2 → m2 !! i = Some x → m1 !! i = None. Proof. rewrite (symmetry_iff map_disjoint). apply map_disjoint_Some_l. Qed. -Lemma map_disjoint_singleton_l {A} (m: M A) i x : {[i↦x]} ⊥ₘ m ↔ m !! i = None. +Lemma map_disjoint_singleton_l {A} (m: M A) i x : {[i:=x]} ⊥ₘ m ↔ m !! i = None. Proof. split; [|rewrite !map_disjoint_spec]. - * intro. apply (map_disjoint_Some_l {[i ↦ x]} _ _ x); + * intro. apply (map_disjoint_Some_l {[i := x]} _ _ x); auto using lookup_singleton. * intros ? j y1 y2. destruct (decide (i = j)) as [->|]. + rewrite lookup_singleton. intuition congruence. + by rewrite lookup_singleton_ne. Qed. Lemma map_disjoint_singleton_r {A} (m : M A) i x : - m ⊥ₘ {[i ↦ x]} ↔ m !! i = None. + m ⊥ₘ {[i := x]} ↔ m !! i = None. Proof. by rewrite (symmetry_iff map_disjoint), map_disjoint_singleton_l. Qed. Lemma map_disjoint_singleton_l_2 {A} (m : M A) i x : - m !! i = None → {[i ↦ x]} ⊥ₘ m. + m !! i = None → {[i := x]} ⊥ₘ m. Proof. by rewrite map_disjoint_singleton_l. Qed. Lemma map_disjoint_singleton_r_2 {A} (m : M A) i x : - m !! i = None → m ⊥ₘ {[i ↦ x]}. + m !! i = None → m ⊥ₘ {[i := x]}. Proof. by rewrite map_disjoint_singleton_r. Qed. Lemma map_disjoint_delete_l {A} (m1 m2 : M A) i : m1 ⊥ₘ m2 → delete i m1 ⊥ₘ m2. Proof. @@ -1233,7 +1233,7 @@ Proof. by rewrite map_disjoint_union_l. Qed. Lemma map_disjoint_union_r_2 {A} (m1 m2 m3 : M A) : m1 ⊥ₘ m2 → m1 ⊥ₘ m3 → m1 ⊥ₘ m2 ∪ m3. Proof. by rewrite map_disjoint_union_r. Qed. -Lemma insert_union_singleton_l {A} (m : M A) i x : <[i:=x]>m = {[i ↦ x]} ∪ m. +Lemma insert_union_singleton_l {A} (m : M A) i x : <[i:=x]>m = {[i := x]} ∪ m. Proof. apply map_eq. intros j. apply option_eq. intros y. rewrite lookup_union_Some_raw. @@ -1242,7 +1242,7 @@ Proof. * rewrite !lookup_singleton_ne, lookup_insert_ne; intuition congruence. Qed. Lemma insert_union_singleton_r {A} (m : M A) i x : - m !! i = None → <[i:=x]>m = m ∪ {[i ↦ x]}. + m !! i = None → <[i:=x]>m = m ∪ {[i := x]}. Proof. intro. rewrite insert_union_singleton_l, map_union_comm; [done |]. by apply map_disjoint_singleton_l. @@ -1446,15 +1446,15 @@ End theorems. (** * Tactics *) (** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint] in the hypotheses that involve the empty map [∅], the union [(∪)] or insert -[<[_:=_]>] operation, the singleton [{[_↦ _]}] map, and disjointness of lists of +[<[_:=_]>] operation, the singleton [{[_:= _]}] map, and disjointness of lists of maps. This tactic does not yield any information loss as all simplifications performed are reversible. *) Ltac decompose_map_disjoint := repeat match goal with | H : _ ∪ _ ⊥ₘ _ |- _ => apply map_disjoint_union_l in H; destruct H | H : _ ⊥ₘ _ ∪ _ |- _ => apply map_disjoint_union_r in H; destruct H - | H : {[ _ ↦ _ ]} ⊥ₘ _ |- _ => apply map_disjoint_singleton_l in H - | H : _ ⊥ₘ {[ _ ↦ _ ]} |- _ => apply map_disjoint_singleton_r in H + | H : {[ _ := _ ]} ⊥ₘ _ |- _ => apply map_disjoint_singleton_l in H + | H : _ ⊥ₘ {[ _ := _ ]} |- _ => apply map_disjoint_singleton_r in H | H : <[_:=_]>_ ⊥ₘ _ |- _ => apply map_disjoint_insert_l in H; destruct H | H : _ ⊥ₘ <[_:=_]>_ |- _ => apply map_disjoint_insert_r in H; destruct H | H : ⋃ _ ⊥ₘ _ |- _ => apply map_disjoint_union_list_l in H @@ -1478,9 +1478,9 @@ Ltac solve_map_disjoint := Hint Extern 1 (_ ⊥ₘ _) => done : map_disjoint. Hint Extern 2 (∅ ⊥ₘ _) => apply map_disjoint_empty_l : map_disjoint. Hint Extern 2 (_ ⊥ₘ ∅) => apply map_disjoint_empty_r : map_disjoint. -Hint Extern 2 ({[ _ ↦ _ ]} ⊥ₘ _) => +Hint Extern 2 ({[ _ := _ ]} ⊥ₘ _) => apply map_disjoint_singleton_l_2 : map_disjoint. -Hint Extern 2 (_ ⊥ₘ {[ _ ↦ _ ]}) => +Hint Extern 2 (_ ⊥ₘ {[ _ := _ ]}) => apply map_disjoint_singleton_r_2 : map_disjoint. Hint Extern 2 (_ ∪ _ ⊥ₘ _) => apply map_disjoint_union_l_2 : map_disjoint. Hint Extern 2 (_ ⊥ₘ _ ∪ _) => apply map_disjoint_union_r_2 : map_disjoint. @@ -1512,7 +1512,7 @@ Tactic Notation "simpl_map" "by" tactic3(tac) := repeat rewrite lookup_alter in H || rewrite lookup_alter_ne in H by tac | H : context[ (delete _ _) !! _] |- _ => rewrite lookup_delete in H || rewrite lookup_delete_ne in H by tac - | H : context[ {[ _ ↦ _ ]} !! _ ] |- _ => + | H : context[ {[ _ := _ ]} !! _ ] |- _ => rewrite lookup_singleton in H || rewrite lookup_singleton_ne in H by tac | H : context[ (_ <$> _) !! _ ] |- _ => rewrite lookup_fmap in H | H : context[ (omap _ _) !! _ ] |- _ => rewrite lookup_omap in H @@ -1529,7 +1529,7 @@ Tactic Notation "simpl_map" "by" tactic3(tac) := repeat rewrite lookup_alter || rewrite lookup_alter_ne by tac | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete || rewrite lookup_delete_ne by tac - | |- context[ {[ _ ↦ _ ]} !! _ ] => + | |- context[ {[ _ := _ ]} !! _ ] => rewrite lookup_singleton || rewrite lookup_singleton_ne by tac | |- context[ (_ <$> _) !! _ ] => rewrite lookup_fmap | |- context[ (omap _ _) !! _ ] => rewrite lookup_omap @@ -1546,7 +1546,7 @@ Tactic Notation "simpl_map" := simpl_map by eauto with simpl_map map_disjoint. Hint Extern 80 ((_ ∪ _) !! _ = Some _) => apply lookup_union_Some_l : simpl_map. Hint Extern 81 ((_ ∪ _) !! _ = Some _) => apply lookup_union_Some_r : simpl_map. -Hint Extern 80 ({[ _↦_ ]} !! _ = Some _) => apply lookup_singleton : simpl_map. +Hint Extern 80 ({[ _:=_ ]} !! _ = Some _) => apply lookup_singleton : simpl_map. Hint Extern 80 (<[_:=_]> _ !! _ = Some _) => apply lookup_insert : simpl_map. (** Now we take everything together and also discharge conflicting look ups, @@ -1558,8 +1558,8 @@ Tactic Notation "simplify_map_equality" "by" tactic3(tac) := | _ => progress simpl_map by tac | _ => progress simplify_equality | _ => progress simpl_option by tac - | H : {[ _ ↦ _ ]} !! _ = None |- _ => rewrite lookup_singleton_None in H - | H : {[ _ ↦ _ ]} !! _ = Some _ |- _ => + | H : {[ _ := _ ]} !! _ = None |- _ => rewrite lookup_singleton_None in H + | H : {[ _ := _ ]} !! _ = Some _ |- _ => rewrite lookup_singleton_Some in H; destruct H | H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = Some ?y |- _ => let H3 := fresh in @@ -1572,8 +1572,8 @@ Tactic Notation "simplify_map_equality" "by" tactic3(tac) := apply map_union_cancel_l in H; [|by tac|by tac] | H : _ ∪ ?m = _ ∪ ?m |- _ => apply map_union_cancel_r in H; [|by tac|by tac] - | H : {[?i ↦ ?x]} = ∅ |- _ => by destruct (map_non_empty_singleton i x) - | H : ∅ = {[?i ↦ ?x]} |- _ => by destruct (map_non_empty_singleton i x) + | H : {[?i := ?x]} = ∅ |- _ => by destruct (map_non_empty_singleton i x) + | H : ∅ = {[?i := ?x]} |- _ => by destruct (map_non_empty_singleton i x) | H : ?m !! ?i = Some _, H2 : ?m !! ?j = None |- _ => unless (i ≠j) by done; assert (i ≠j) by (by intros ?; simplify_equality) diff --git a/prelude/hashset.v b/prelude/hashset.v index 148d431b2..b6f3f85f9 100644 --- a/prelude/hashset.v +++ b/prelude/hashset.v @@ -23,7 +23,7 @@ Instance hashset_elem_of: ElemOf A (hashset hash) := λ x m, ∃ l, Program Instance hashset_empty: Empty (hashset hash) := Hashset ∅ _. Next Obligation. by intros n X; simpl_map. Qed. Program Instance hashset_singleton: Singleton A (hashset hash) := λ x, - Hashset {[ hash x ↦ [x] ]} _. + Hashset {[ hash x := [x] ]} _. Next Obligation. intros x n l [<- <-]%lookup_singleton_Some. rewrite Forall_singleton; auto using NoDup_singleton. diff --git a/prelude/mapset.v b/prelude/mapset.v index 630e40547..e0f3dff01 100644 --- a/prelude/mapset.v +++ b/prelude/mapset.v @@ -17,7 +17,7 @@ Instance mapset_elem_of: ElemOf K (mapset M) := λ x X, mapset_car X !! x = Some (). Instance mapset_empty: Empty (mapset M) := Mapset ∅. Instance mapset_singleton: Singleton K (mapset M) := λ x, - Mapset {[ x ↦ () ]}. + Mapset {[ x := () ]}. Instance mapset_union: Union (mapset M) := λ X1 X2, let (m1) := X1 in let (m2) := X2 in Mapset (m1 ∪ m2). Instance mapset_intersection: Intersection (mapset M) := λ X1 X2, diff --git a/program_logic/ghost_ownership.v b/program_logic/ghost_ownership.v index cfcae20e5..de694e399 100644 --- a/program_logic/ghost_ownership.v +++ b/program_logic/ghost_ownership.v @@ -17,7 +17,7 @@ Class inG (Λ : language) (Σ : gid → iFunctor) (A : cmraT) := InG { }. Definition to_globalF `{inG Λ Σ A} (γ : gname) (a : A) : iGst Λ (globalF Σ) := - iprod_singleton inG_id {[ γ ↦ cmra_transport inG_prf a ]}. + iprod_singleton inG_id {[ γ := cmra_transport inG_prf a ]}. Definition own `{inG Λ Σ A} (γ : gname) (a : A) : iProp Λ (globalF Σ) := ownG (to_globalF γ a). Instance: Params (@to_globalF) 5. diff --git a/program_logic/ownership.v b/program_logic/ownership.v index 7327ff100..c13c8fea3 100644 --- a/program_logic/ownership.v +++ b/program_logic/ownership.v @@ -1,7 +1,7 @@ From program_logic Require Export model. Definition ownI {Λ Σ} (i : positive) (P : iProp Λ Σ) : iProp Λ Σ := - uPred_ownM (Res {[ i ↦ to_agree (Next (iProp_unfold P)) ]} ∅ ∅). + uPred_ownM (Res {[ i := to_agree (Next (iProp_unfold P)) ]} ∅ ∅). Arguments ownI {_ _} _ _%I. Definition ownP {Λ Σ} (σ: state Λ) : iProp Λ Σ := uPred_ownM (Res ∅ (Excl σ) ∅). Definition ownG {Λ Σ} (m: iGst Λ Σ) : iProp Λ Σ := uPred_ownM (Res ∅ ∅ (Some m)). @@ -66,7 +66,6 @@ Proof. apply (uPred.always_entails_r _ _), ownG_valid. Qed. Global Instance ownG_timeless m : Timeless m → TimelessP (ownG m). Proof. rewrite /ownG; apply _. Qed. - (* inversion lemmas *) Lemma ownI_spec r n i P : ✓{n} r → diff --git a/program_logic/pviewshifts.v b/program_logic/pviewshifts.v index 6127a0a17..1bc285f97 100644 --- a/program_logic/pviewshifts.v +++ b/program_logic/pviewshifts.v @@ -121,7 +121,7 @@ Proof. intros ? r [|n] ? HP rf [|k] Ef σ ???; try lia. destruct (wsat_alloc k E Ef σ rf P r) as (i&?&?&?); auto. { apply uPred_weaken with r n; eauto. } - exists (Res {[ i ↦ to_agree (Next (iProp_unfold P)) ]} ∅ ∅). + exists (Res {[ i := to_agree (Next (iProp_unfold P)) ]} ∅ ∅). by split; [by exists i; split; rewrite /uPred_holds /=|]. Qed. diff --git a/program_logic/wsat.v b/program_logic/wsat.v index c602d2912..d25dbd25c 100644 --- a/program_logic/wsat.v +++ b/program_logic/wsat.v @@ -137,7 +137,7 @@ Qed. Lemma wsat_alloc n E1 E2 σ r P rP : ¬set_finite E1 → P n rP → wsat (S n) (E1 ∪ E2) σ (rP ⋅ r) → ∃ i, wsat (S n) (E1 ∪ E2) σ - (Res {[i ↦ to_agree (Next (iProp_unfold P))]} ∅ ∅ ⋅ r) ∧ + (Res {[i := to_agree (Next (iProp_unfold P))]} ∅ ∅ ⋅ r) ∧ wld r !! i = None ∧ i ∈ E1. Proof. intros HE1 ? [rs [Hval Hσ HE Hwld]]. -- GitLab