From 785b2175d51d0f0d741832570e1a17c0c90bc325 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 15 Dec 2015 17:51:48 +0100 Subject: [PATCH] Rename RAEmpty -> RAIdentity. --- modures/auth.v | 4 ++-- modures/cmra.v | 2 +- modures/excl.v | 2 +- modures/fin_maps.v | 2 +- modures/logic.v | 4 ++-- modures/ra.v | 4 ++-- 6 files changed, 9 insertions(+), 9 deletions(-) diff --git a/modures/auth.v b/modures/auth.v index 3f4fcebe3..bc13913a4 100644 --- a/modures/auth.v +++ b/modures/auth.v @@ -119,7 +119,7 @@ Proof. as (z2&?&?&?); auto using own_validN. by exists (Auth (z1.1) (z2.1), Auth (z1.2) (z2.2)). Qed. -Instance auth_ra_empty `{CMRA A, Empty A, !RAEmpty A} : RAEmpty (auth A). +Instance auth_ra_empty `{CMRA A, Empty A, !RAIdentity A} : RAIdentity (auth A). Proof. split; [apply (ra_empty_valid (A:=A))|]. by intros x; constructor; simpl; rewrite (left_id _ _). @@ -127,7 +127,7 @@ Qed. Instance auth_frag_valid_timeless `{CMRA A} (x : A) : ValidTimeless x → ValidTimeless (◯ x). Proof. by intros ??; apply (valid_timeless x). Qed. -Instance auth_valid_timeless `{CMRA A, Empty A, !RAEmpty A} (x : A) : +Instance auth_valid_timeless `{CMRA A, Empty A, !RAIdentity A} (x : A) : ValidTimeless x → ValidTimeless (◠x). Proof. by intros ? [??]; split; [apply ra_empty_least|apply (valid_timeless x)]. diff --git a/modures/cmra.v b/modures/cmra.v index 8990ab978..2e541abab 100644 --- a/modures/cmra.v +++ b/modures/cmra.v @@ -300,7 +300,7 @@ Proof. * intros x y n; rewrite prod_includedN; intros [??]. by split; apply cmra_op_minus. Qed. -Instance prod_ra_empty `{RAEmpty A, RAEmpty B} : RAEmpty (A * B). +Instance prod_ra_empty `{RAIdentity A, RAIdentity B} : RAIdentity (A * B). Proof. repeat split; simpl; repeat apply ra_empty_valid; repeat apply (left_id _ _). Qed. diff --git a/modures/excl.v b/modures/excl.v index 09b8f032e..dd6c4d71f 100644 --- a/modures/excl.v +++ b/modures/excl.v @@ -108,7 +108,7 @@ Proof. * by intros n [?| |] [?| |]. * by intros n [?| |] [?| |] [[?| |] Hz]; inversion_clear Hz; constructor. Qed. -Instance excl_empty_ra `{Cofe A} : RAEmpty (excl A). +Instance excl_empty_ra `{Cofe A} : RAIdentity (excl A). Proof. split. done. by intros []. Qed. Instance excl_extend `{Cofe A} : CMRAExtend (excl A). Proof. diff --git a/modures/fin_maps.v b/modures/fin_maps.v index 579ddcdb8..172047a55 100644 --- a/modures/fin_maps.v +++ b/modures/fin_maps.v @@ -131,7 +131,7 @@ Proof. * intros x y n; rewrite map_includedN_spec; intros ? i. by rewrite lookup_op, lookup_minus, cmra_op_minus by done. Qed. -Global Instance map_ra_empty `{RA A} : RAEmpty (M A). +Global Instance map_ra_empty `{RA A} : RAIdentity (M A). Proof. split. * by intros ?; rewrite lookup_empty. diff --git a/modures/logic.v b/modures/logic.v index d799908ce..ea7902909 100644 --- a/modures/logic.v +++ b/modures/logic.v @@ -354,7 +354,7 @@ Lemma eq_rewrite {A : cofeT} P (Q : A → uPred M) Proof. intros Hab Ha x n ??; apply HQ with n a; auto. by symmetry; apply Hab with x. Qed. -Lemma eq_equiv `{Empty M, !RAEmpty M} {A : cofeT} (a b : A) : +Lemma eq_equiv `{Empty M, !RAIdentity M} {A : cofeT} (a b : A) : True%I ⊆ (a ≡ b : uPred M)%I → a ≡ b. Proof. intros Hab; apply equiv_dist; intros n; apply Hab with ∅. @@ -673,7 +673,7 @@ Proof. rewrite <-(ra_unit_idempotent a), Hx. apply cmra_unit_preserving, cmra_included_l. Qed. -Lemma own_empty `{Empty M, !RAEmpty M} : True%I ⊆ uPred_own ∅. +Lemma own_empty `{Empty M, !RAIdentity M} : True%I ⊆ uPred_own ∅. Proof. intros x [|n] ??; [done|]. by exists x; rewrite (left_id _ _). Qed. Lemma own_valid (a : M) : uPred_own a ⊆ (✓ a)%I. Proof. diff --git a/modures/ra.v b/modures/ra.v index 21c230448..73606702c 100644 --- a/modures/ra.v +++ b/modures/ra.v @@ -38,7 +38,7 @@ Class RA A `{Equiv A, Valid A, Unit A, Op A, Minus A} : Prop := { ra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x; ra_op_minus x y : x ≼ y → x ⋅ y ⩪ x ≡ y }. -Class RAEmpty A `{Equiv A, Valid A, Op A, Empty A} : Prop := { +Class RAIdentity A `{Equiv A, Valid A, Op A, Empty A} : Prop := { ra_empty_valid : ✓ ∅; ra_empty_l :> LeftId (≡) ∅ (⋅) }. @@ -115,7 +115,7 @@ Lemma ra_preserving_r x y z : x ≼ y → x ⋅ z ≼ y ⋅ z. Proof. by intros; rewrite <-!(commutative _ z); apply ra_preserving_l. Qed. (** ** RAs with empty element *) -Context `{Empty A, !RAEmpty A}. +Context `{Empty A, !RAIdentity A}. Global Instance ra_empty_r : RightId (≡) ∅ (⋅). Proof. by intros x; rewrite (commutative op), (left_id _ _). Qed. -- GitLab