From 694073727b494fa3394ace0ddeaf7e338d15e6a0 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Fri, 15 Jan 2016 18:19:41 +0100 Subject: [PATCH] Declare uPred_entails as RewriteRelation to allow rewriting using ssr. This is a workarround, see: https://github.com/math-comp/math-comp/issues/18 --- modures/logic.v | 60 +++++++++++++++++++++++-------------------------- 1 file changed, 28 insertions(+), 32 deletions(-) diff --git a/modures/logic.v b/modures/logic.v index 476f33ed9..fce2df543 100644 --- a/modures/logic.v +++ b/modures/logic.v @@ -55,7 +55,7 @@ Proof. by intros x1 x2 Hx; apply uPred_holds_ne, equiv_dist. Qed. Program Definition uPred_map {M1 M2 : cmraT} (f : M2 → M1) `{!∀ n, Proper (dist n ==> dist n) f, !CMRAMonotone f} (P : uPred M1) : uPred M2 := {| uPred_holds n x := P n (f x) |}. -Next Obligation. by intros M1 M2 f ?? P y1 y2 n ? Hy; simpl; rewrite <-Hy. Qed. +Next Obligation. by intros M1 M2 f ?? P y1 y2 n ? Hy; rewrite /= -Hy. Qed. Next Obligation. intros M1 M2 f _ _ P x; apply uPred_0. Qed. Next Obligation. naive_solver eauto using uPred_weaken, included_preserving, validN_preserving. @@ -79,6 +79,7 @@ Qed. (** logical entailement *) Definition uPred_entails {M} (P Q : uPred M) := ∀ x n, ✓{n} x → P n x → Q n x. Hint Extern 0 (uPred_entails ?P ?P) => reflexivity. +Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M). (** logical connectives *) Program Definition uPred_const {M} (P : Prop) : uPred M := @@ -100,7 +101,7 @@ Next Obligation. intros M P Q x1' x1 n1 HPQ Hx1 x2 n2 ????. destruct (cmra_included_dist_l x1 x2 x1' n1) as (x2'&?&Hx2); auto. assert (x2' ={n2}= x2) as Hx2' by (by apply dist_le with n1). - assert (✓{n2} x2') by (by rewrite Hx2'); rewrite <-Hx2'. + assert (✓{n2} x2') by (by rewrite Hx2'); rewrite -Hx2'. eauto using uPred_weaken, uPred_ne. Qed. Next Obligation. intros M P Q x1 x2 [|n]; auto with lia. Qed. @@ -125,7 +126,7 @@ Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)). Program Definition uPred_sep {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∃ x1 x2, x ={n}= x1 ⋅ x2 ∧ P n x1 ∧ Q n x2 |}. Next Obligation. - by intros M P Q x y n (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite <-Hxy. + by intros M P Q x y n (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite -Hxy. Qed. Next Obligation. by intros M P Q x; exists x, x. Qed. Next Obligation. @@ -162,7 +163,7 @@ Next Obligation. Qed. Program Definition uPred_always {M} (P : uPred M) : uPred M := {| uPred_holds n x := P n (unit x) |}. -Next Obligation. by intros M P x1 x2 n ? Hx; simpl in *; rewrite <-Hx. Qed. +Next Obligation. by intros M P x1 x2 n ? Hx; rewrite /= -Hx. Qed. Next Obligation. by intros; simpl. Qed. Next Obligation. intros M P x1 x2 n1 n2 ????; eapply uPred_weaken with (unit x1) n1; @@ -392,9 +393,9 @@ Proof. by intros HPQ x [|n] ?; [|split; intros; apply HPQ with x (S n)]. Qed. (* Derived logical stuff *) Lemma and_elim_l' P Q R : P ⊑ R → (P ∧ Q) ⊑ R. -Proof. by rewrite ->and_elim_l. Qed. +Proof. by rewrite and_elim_l. Qed. Lemma and_elim_r' P Q R : Q ⊑ R → (P ∧ Q) ⊑ R. -Proof. by rewrite ->and_elim_r. Qed. +Proof. by rewrite and_elim_r. Qed. Lemma or_intro_l' P Q R : P ⊑ Q → P ⊑ (Q ∨ R). Proof. intros ->; apply or_intro_l. Qed. Lemma or_intro_r' P Q R : P ⊑ R → P ⊑ (Q ∨ R). @@ -435,19 +436,17 @@ Lemma or_mono P P' Q Q' : P ⊑ Q → P' ⊑ Q' → (P ∨ P') ⊑ (Q ∨ Q'). Proof. auto. Qed. Lemma impl_mono P P' Q Q' : Q ⊑ P → P' ⊑ Q' → (P → P') ⊑ (Q → Q'). Proof. - intros HP HQ'; apply impl_intro; rewrite <-HQ'. + intros HP HQ'; apply impl_intro; rewrite -HQ'. apply impl_elim with P; eauto. Qed. Lemma forall_mono {A} (P Q : A → uPred M) : (∀ a, P a ⊑ Q a) → (∀ a, P a) ⊑ (∀ a, Q a). Proof. - intros HPQ. apply forall_intro=> a; rewrite <-(HPQ a); apply forall_elim. + intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim. Qed. Lemma exist_mono {A} (P Q : A → uPred M) : (∀ a, P a ⊑ Q a) → (∃ a, P a) ⊑ (∃ a, Q a). -Proof. - intros HPQ. apply exist_elim=> a; rewrite ->(HPQ a); apply exist_intro. -Qed. +Proof. intros HP. apply exist_elim=> a; rewrite (HP a); apply exist_intro. Qed. Global Instance const_mono' : Proper (impl ==> (⊑)) (@uPred_const M). Proof. intros P Q; apply const_mono. Qed. Global Instance and_mono' : Proper ((⊑) ==> (⊑) ==> (⊑)) (@uPred_and M). @@ -553,16 +552,14 @@ Hint Resolve sep_mono. Global Instance sep_mono' : Proper ((⊑) ==> (⊑) ==> (⊑)) (@uPred_sep M). Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed. Lemma wand_mono P P' Q Q' : Q ⊑ P → P' ⊑ Q' → (P -★ P') ⊑ (Q -★ Q'). -Proof. - intros HP HQ; apply wand_intro; rewrite ->HP, <-HQ; apply wand_elim_l. -Qed. +Proof. intros HP HQ; apply wand_intro; rewrite HP -HQ; apply wand_elim_l. Qed. Global Instance wand_mono' : Proper (flip (⊑) ==> (⊑) ==> (⊑)) (@uPred_wand M). Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed. Global Instance sep_True : RightId (≡) True%I (@uPred_sep M). Proof. by intros P; rewrite (commutative _) (left_id _ _). Qed. Lemma sep_elim_l P Q : (P ★ Q) ⊑ P. -Proof. by rewrite ->(True_intro Q), (right_id _ _). Qed. +Proof. by rewrite (True_intro Q) (right_id _ _). Qed. Lemma sep_elim_r P Q : (P ★ Q) ⊑ Q. Proof. by rewrite (commutative (★))%I; apply sep_elim_l. Qed. Lemma sep_elim_l' P Q R : P ⊑ R → (P ★ Q) ⊑ R. @@ -602,9 +599,9 @@ Qed. Lemma sep_exist_r {A} (P: A → uPred M) Q: ((∃ a, P a) ★ Q)%I ≡ (∃ a, P a ★ Q)%I. Proof. setoid_rewrite (commutative _ _ Q); apply sep_exist_l. Qed. Lemma sep_forall_l {A} P (Q : A → uPred M) : (P ★ ∀ a, Q a) ⊑ (∀ a, P ★ Q a). -Proof. by apply forall_intro; intros a; rewrite ->forall_elim. Qed. +Proof. by apply forall_intro=> a; rewrite forall_elim. Qed. Lemma sep_forall_r {A} (P : A → uPred M) Q : ((∀ a, P a) ★ Q) ⊑ (∀ a, P a ★ Q). -Proof. by apply forall_intro; intros a; rewrite ->forall_elim. Qed. +Proof. by apply forall_intro=> a; rewrite forall_elim. Qed. (* Later *) Lemma later_mono P Q : P ⊑ Q → ▷ P ⊑ ▷ Q. @@ -646,11 +643,11 @@ Global Instance later_mono' : Proper ((⊑) ==> (⊑)) (@uPred_later M). Proof. intros P Q; apply later_mono. Qed. Lemma later_impl P Q : ▷ (P → Q) ⊑ (▷ P → ▷ Q). Proof. - apply impl_intro; rewrite <-later_and. + apply impl_intro; rewrite -later_and. apply later_mono, impl_elim with P; auto. Qed. Lemma later_wand P Q : ▷ (P -★ Q) ⊑ (▷ P -★ ▷ Q). -Proof. apply wand_intro; rewrite <-later_sep; apply later_mono,wand_elim_l. Qed. +Proof. apply wand_intro; rewrite -later_sep; apply later_mono,wand_elim_l. Qed. (* Always *) Lemma always_const (P : Prop) : (□ ■P : uPred M)%I ≡ (■P)%I. @@ -689,13 +686,13 @@ Proof. done. Qed. Lemma always_always P : (□ □ P)%I ≡ (□ P)%I. Proof. apply (anti_symmetric (⊑)); auto using always_elim, always_intro. Qed. Lemma always_mono P Q : P ⊑ Q → □ P ⊑ □ Q. -Proof. intros. apply always_intro. by rewrite ->always_elim. Qed. +Proof. intros. apply always_intro. by rewrite always_elim. Qed. Hint Resolve always_mono. Global Instance always_mono' : Proper ((⊑) ==> (⊑)) (@uPred_always M). Proof. intros P Q; apply always_mono. Qed. Lemma always_impl P Q : □ (P → Q) ⊑ (□ P → □ Q). Proof. - apply impl_intro; rewrite <-always_and. + apply impl_intro; rewrite -always_and. apply always_mono, impl_elim with P; auto. Qed. Lemma always_eq {A:cofeT} (a b : A) : (□ (a ≡ b))%I ≡ (a ≡ b : uPred M)%I. @@ -703,28 +700,28 @@ Proof. apply (anti_symmetric (⊑)); auto using always_elim. refine (eq_rewrite _ (λ b, □ (a ≡ b))%I a b _ _); auto. { intros n; solve_proper. } - rewrite <-(eq_refl _ True), always_const; auto. + rewrite -(eq_refl _ True) always_const; auto. Qed. Lemma always_and_sep_r P Q : (P ∧ □ Q) ⊑ (P ★ □ Q). Proof. rewrite !(commutative _ P); apply always_and_sep_l. Qed. Lemma always_sep P Q : (□ (P ★ Q))%I ≡ (□ P ★ □ Q)%I. Proof. apply (anti_symmetric (⊑)). - * rewrite <-always_and_sep_l; auto. - * rewrite <-always_and_sep', always_and; auto. + * rewrite -always_and_sep_l; auto. + * rewrite -always_and_sep' always_and; auto. Qed. Lemma always_wand P Q : □ (P -★ Q) ⊑ (□ P -★ □ Q). -Proof. by apply wand_intro; rewrite <-always_sep, wand_elim_l. Qed. +Proof. by apply wand_intro; rewrite -always_sep wand_elim_l. Qed. Lemma always_sep_and P Q : (□ (P ★ Q))%I ≡ (□ (P ∧ Q))%I. Proof. apply (anti_symmetric (⊑)); auto using always_and_sep'. Qed. Lemma always_sep_dup P : (□ P)%I ≡ (□ P ★ □ P)%I. -Proof. by rewrite <-always_sep, always_sep_and, (idempotent _). Qed. +Proof. by rewrite -always_sep always_sep_and (idempotent _). Qed. Lemma always_wand_impl P Q : (□ (P -★ Q))%I ≡ (□ (P → Q))%I. Proof. - apply (anti_symmetric (⊑)); [|by rewrite <-impl_wand]. + apply (anti_symmetric (⊑)); [|by rewrite -impl_wand]. apply always_intro, impl_intro. - by rewrite ->always_and_sep_l, always_elim, wand_elim_l. + by rewrite always_and_sep_l always_elim wand_elim_l. Qed. (* Own *) @@ -760,7 +757,7 @@ Lemma valid_mono {A B : cmraT} (a : A) (b : B) : (∀ n, ✓{n} a → ✓{n} b) → (✓ a) ⊑ (✓ b). Proof. by intros ? x n ?; simpl; auto. Qed. Lemma own_invalid (a : M) : ¬ ✓{1} a → uPred_own a ⊑ False. -Proof. by intros; rewrite ->own_valid, ->valid_elim. Qed. +Proof. by intros; rewrite own_valid valid_elim. Qed. (* Big ops *) Global Instance uPred_big_and_proper : Proper ((≡) ==> (≡)) (@uPred_big_and M). @@ -813,8 +810,7 @@ Global Instance and_timeless P Q: TimelessP P → TimelessP Q → TimelessP (P Proof. by intros ??; rewrite /TimelessP later_and or_and_r; apply and_mono. Qed. Global Instance or_timeless P Q : TimelessP P → TimelessP Q → TimelessP (P ∨ Q). Proof. - intros; rewrite /TimelessP later_or. - rewrite ->(timelessP P), (timelessP Q); eauto 10. + intros; rewrite /TimelessP later_or (timelessP P) (timelessP Q); eauto 10. Qed. Global Instance impl_timeless P Q : TimelessP Q → TimelessP (P → Q). Proof. @@ -823,7 +819,7 @@ Proof. Qed. Global Instance sep_timeless P Q: TimelessP P → TimelessP Q → TimelessP (P ★ Q). Proof. - intros; rewrite /TimelessP later_sep; rewrite ->(timelessP P), (timelessP Q). + intros; rewrite /TimelessP later_sep (timelessP P) (timelessP Q). apply wand_elim_l',or_elim;apply wand_intro; auto. apply wand_elim_r',or_elim;apply wand_intro; rewrite ?(commutative _ Q); auto. Qed. -- GitLab