diff --git a/Makefile b/Makefile index 02790ecc117c7d941bb0d90662edbb95ee0362aa..4812b97791ffd22a860951c66253f67ce9c12cb1 100644 --- a/Makefile +++ b/Makefile @@ -14,7 +14,7 @@ # # This Makefile was generated by the command line : -# coq_makefile lib/ModuRes -R lib/ModuRes ModuRes core_lang.v iris.v iris_core.v lang.v masks.v world_prop.v world_prop_old.v world_prop_sig.v -o Makefile +# coq_makefile lib/ModuRes -R lib/ModuRes ModuRes core_lang.v iris.v iris_core.v lang.v masks.v world_prop.v world_prop_sig.v -o Makefile # .DEFAULT_GOAL := all @@ -82,11 +82,10 @@ endif VFILES:=core_lang.v\ iris.v\ -# iris_core.v\ + iris_core.v\ lang.v\ masks.v\ world_prop.v\ - world_prop_old.v\ world_prop_sig.v -include $(addsuffix .d,$(VFILES)) diff --git a/iris.v b/iris.v index ba8473549d0ac5bf459fe204c5dd08565ac0f3cb..4596631efcd4b02ef0d9a18f90d04542cc3fe5cc 100644 --- a/iris.v +++ b/iris.v @@ -25,7 +25,6 @@ Module Iris (RL : PCM_T) (C : CORE_LANG). Instance Props_BI : ComplBI Props | 0 := _. Instance Props_Later : Later Props | 0 := _. - Set Printing All. (** And now we're ready to build the IRIS-specific connectives! *) diff --git a/world_prop.v b/world_prop.v index 7fd476ad5c611934141e1b7dfffb43619798e332..5f12e852f9659384665677391d079cd025475754 100644 --- a/world_prop.v +++ b/world_prop.v @@ -5,7 +5,7 @@ Require Import ModuRes.Finmap ModuRes.Constr. Require Import ModuRes.PCM ModuRes.UPred ModuRes.BI. Require Import world_prop_sig. -Module WorldProp (Res : PCM_T) <: WORLD_PROP Res. +Module WorldProp (Res : PCM_T) : WORLD_PROP Res. (** The construction is parametric in the monoid we choose *) Import Res. diff --git a/world_prop_sig.v b/world_prop_sig.v index 2f45c590302a1cb9f4c510e61f1e98564795fc61..5399a01ca37e54d45162d15537889b5fe0514644 100644 --- a/world_prop_sig.v +++ b/world_prop_sig.v @@ -20,7 +20,7 @@ Module Type WORLD_PROP (Res : PCM_T). Parameter ı : PreProp -t> halve (cmfromType Props). Parameter ı' : halve (cmfromType Props) -t> PreProp. Axiom iso : forall P, ı' (ı P) == P. - Axiom isoR : forall T, ı (ı' T) == T. + Axiom isoR: forall T, ı (ı' T) == T. (* Define all the things on Props, so they have names - this shortens the terms later *) Instance Props_ty : Setoid Props := _.