From 5b048a316a07e22c196ce0aee60afcc0ff6763ee Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 16 Feb 2016 01:14:31 +0100 Subject: [PATCH] Simplify up_set_proper. --- algebra/sts.v | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/algebra/sts.v b/algebra/sts.v index 08c080b3c..faf8ee3c9 100644 --- a/algebra/sts.v +++ b/algebra/sts.v @@ -59,8 +59,8 @@ Global Instance valid : Valid (bound sts) := λ x, end. Definition up (s : state) (T : set token) : set state := mkSet (rtc (frame_step T) s). -Definition up_set (S : set state) (T : set token) : set state - := S ≫= λ s, up s T. +Definition up_set (S : set state) (T : set token) : set state := + S ≫= λ s, up s T. Global Instance unit : Unit (bound sts) := λ x, match x with | bound_frag S' _ => bound_frag (up_set S' ∅ ) ∅ @@ -135,9 +135,7 @@ Proof. f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving. Qed. Instance up_set_proper : Proper ((≡) ==> (≡) ==> (≡)) up_set. -Proof. - by intros ?? EQ1 ?? EQ2; split; apply up_set_preserving; rewrite ?EQ1 ?EQ2. -Qed. +Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed. Lemma elem_of_up s T : s ∈ up s T. Proof. constructor. Qed. Lemma subseteq_up_set S T : S ⊆ up_set S T. -- GitLab