diff --git a/docs/algebra.tex b/docs/algebra.tex
index a11f91ab16bbc0da21de589750ea7eba8527428f..7d18bfab11fffa712c8a9f00cba93acc84b6bd08 100644
--- a/docs/algebra.tex
+++ b/docs/algebra.tex
@@ -2,6 +2,7 @@
 
 \subsection{COFE}
 
+This definition varies slightly from the original one in~\cite{catlogic}.
 \begin{defn}[Chain]
   Given some set $\cofe$ and an indexed family $({\nequiv{n}} \subseteq \cofe \times \cofe)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to \cofe$ such that $\All n, m. n \leq m \Ra c (m) \nequiv{n} c (n)$.
 \end{defn}
@@ -22,6 +23,8 @@
   An element $x \in \cofe$ of a COFE is called \emph{discrete} if
   \[ \All y \in \cofe. x \nequiv{0} y \Ra x = y\]
   A COFE $A$ is called \emph{discrete} if all its elements are discrete.
+  For a set $X$, we write $\Delta X$ for the discrete COFE with $x \nequiv{n} x' \eqdef x = x'$
+
 \end{defn}
 
 \begin{defn}
@@ -30,6 +33,7 @@
   It is \emph{contractive} if
   \[ \All n, x \in \cofe, y \in \cofe. (\All m < n. x \nequiv{m} y) \Ra f(x) \nequiv{n} f(x) \]
 \end{defn}
+The reason that contractive functions are interesting is that for every contractive $f : \cofe \to \cofe$ with $\cofe$ inhabited, there exists a fixed-point $\fix(f)$ such that $\fix(f) = f(\fix(f))$.
 
 \begin{defn}
   The category $\COFEs$ consists of COFEs as objects, and non-expansive functions as arrows.
@@ -52,7 +56,31 @@ Note that the composition of non-expansive (bi)functors is non-expansive, and th
 
 \subsection{RA}
 
-\ralf{Copy this from the paper, when that one is more polished.}
+\begin{defn}
+  A \emph{resource algebra} (RA) is a tuple \\
+  $(\monoid, \mval \subseteq \monoid, \mcore{-}:
+  \monoid \to \monoid, (\mtimes) : \monoid \times \monoid \to \monoid)$ satisfying
+  \begin{align*}
+    \All \melt, \meltB, \meltC.& (\melt \mtimes \meltB) \mtimes \meltC = \melt \mtimes (\meltB \mtimes \meltC) \tagH{ra-assoc} \\
+    \All \melt, \meltB.& \melt \mtimes \meltB = \meltB \mtimes \melt \tagH{ra-comm} \\
+    \All \melt.& \mcore\melt \mtimes \melt = \melt \tagH{ra-core-id} \\
+    \All \melt.& \mcore{\mcore\melt} = \mcore\melt \tagH{ra-core-idem} \\
+    \All \melt, \meltB.& \melt \mincl \meltB \Ra \mcore\melt \mincl \mcore\meltB \tagH{ra-core-mono} \\
+    \All \melt, \meltB.& (\melt \mtimes \meltB) \in \mval \Ra \melt \in \mval \tagH{ra-valid-op} \\
+    \text{where}\qquad %\qquad\\
+    \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{ra-incl}
+  \end{align*}
+\end{defn}
+
+\begin{defn}
+  It is possible to do a \emph{frame-preserving update} from $\melt \in \monoid$ to $\meltsB \subseteq \monoid$, written $\melt \mupd \meltsB$, if
+  \[ \All \melt_\f. \melt \mtimes \melt_\f \in \mval \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \melt_\f \in \mval \]
+
+  We further define $\melt \mupd \meltB \eqdef \melt \mupd \set\meltB$.
+\end{defn}
+
+
+\ralf{Copy the explanation from the paper, when that one is more polished.}
 
 \subsection{CMRA}
 
@@ -70,7 +98,8 @@ Note that the composition of non-expansive (bi)functors is non-expansive, and th
     \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$\melt \in \mval_n \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\
     &\Exists \meltC_1, \meltC_2. \melt = \meltC_1 \mtimes \meltC_2 \land \meltC_1 \nequiv{n} \meltB_1 \land \meltC_2 \nequiv{n} \meltB_2 \tagH{cmra-extend} \\
     \text{where}\qquad\qquad\\
-    \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl}
+    \melt \mincl \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl}\\
+    \melt \mincl[n] \meltB \eqdef{}& \Exists \meltC. \meltB \nequiv{n} \melt \mtimes \meltC \tagH{cmra-inclN}
   \end{align*}
 \end{defn}
 
@@ -117,7 +146,7 @@ This operation is needed to prove that $\later$ commutes with existential quanti
 
 \begin{defn}
   It is possible to do a \emph{frame-preserving update} from $\melt \in \monoid$ to $\meltsB \subseteq \monoid$, written $\melt \mupd \meltsB$, if
-  \[ \All n, \melt_f. \melt \mtimes \melt_f \in \mval_n \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \melt_f \in \mval_n \]
+  \[ \All n, \melt_\f. \melt \mtimes \melt_\f \in \mval_n \Ra \Exists \meltB \in \meltsB. \meltB \mtimes \melt_\f \in \mval_n \]
 
   We further define $\melt \mupd \meltB \eqdef \melt \mupd \set\meltB$.
 \end{defn}
diff --git a/docs/constructions.tex b/docs/constructions.tex
index 834f29af760a7f156f148b11ed2feb9bff75bc43..dc3b643b3f7347ac7da9f3789e18ffd3080d27a5 100644
--- a/docs/constructions.tex
+++ b/docs/constructions.tex
@@ -25,7 +25,7 @@ where $\mProp$ is the set of meta-level propositions, \eg Coq's \texttt{Prop}.
 $\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$.
 
 One way to understand this definition is to re-write it a little.
-We start by defining the COFE of \emph{step-indexed propositions}:
+We start by defining the COFE of \emph{step-indexed propositions}: For every step-index, we proposition either holds or does not hold.
 \begin{align*}
   \SProp \eqdef{}& \psetdown{\mathbb{N}} \\
     \eqdef{}& \setComp{\prop \in \pset{\mathbb{N}}}{ \All n, m. n \geq m \Ra n \in \prop \Ra m \in \prop } \\
@@ -33,7 +33,7 @@ We start by defining the COFE of \emph{step-indexed propositions}:
 \end{align*}
 Now we can rewrite $\UPred(\monoid)$ as monotone step-indexed predicates over $\monoid$, where the definition of a ``monotone'' function here is a little funny.
 \begin{align*}
-  \UPred(\monoid) \approx{}& \monoid \monra \SProp \\
+  \UPred(\monoid) \cong{}& \monoid \monra \SProp \\
      \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}{\All n, m, x, y. n \in \pred(x) \land x \mincl y \land m \leq n \land y \in \mval_m \Ra m \in \pred(y)}
 \end{align*}
 The reason we chose the first definition is that it is easier to work with in Coq.
@@ -77,35 +77,35 @@ $K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
 \subsection{Agreement}
 
 Given some COFE $\cofe$, we define $\agm(\cofe)$ as follows:
-\newcommand{\agc}{\mathrm{c}} % the "c" field of an agreement element
-\newcommand{\agV}{\mathrm{V}} % the "V" field of an agreement element
+\newcommand{\aginjc}{\mathrm{c}} % the "c" field of an agreement element
+\newcommand{\aginjV}{\mathrm{V}} % the "V" field of an agreement element
 \begin{align*}
-  \agm(\cofe) \eqdef{}& \record{\agc : \mathbb{N} \to \cofe , \agV : \SProp} \\
+  \agm(\cofe) \eqdef{}& \record{\aginjc : \mathbb{N} \to \cofe , \aginjV : \SProp} \\
   & \text{quotiented by} \\
-  \melt \equiv \meltB \eqdef{}& \melt.\agV = \meltB.\agV \land \All n. n \in \melt.\agV \Ra \melt.\agc(n) \nequiv{n} \meltB.\agc(n) \\
-  \melt \nequiv{n} \meltB \eqdef{}& (\All m \leq n. m \in \melt.\agV \Lra m \in \meltB.\agV) \land (\All m \leq n. m \in \melt.\agV \Ra \melt.\agc(m) \nequiv{m} \meltB.\agc(m)) \\
-  \mval_n \eqdef{}& \setComp{\melt \in \monoid}{ n \in \melt.\agV \land \All m \leq n. \melt.\agc(n) \nequiv{m} \melt.\agc(m) } \\
+  \melt \equiv \meltB \eqdef{}& \melt.\aginjV = \meltB.\aginjV \land \All n. n \in \melt.\aginjV \Ra \melt.\aginjc(n) \nequiv{n} \meltB.\aginjc(n) \\
+  \melt \nequiv{n} \meltB \eqdef{}& (\All m \leq n. m \in \melt.\aginjV \Lra m \in \meltB.\aginjV) \land (\All m \leq n. m \in \melt.\aginjV \Ra \melt.\aginjc(m) \nequiv{m} \meltB.\aginjc(m)) \\
+  \mval_n \eqdef{}& \setComp{\melt \in \monoid}{ n \in \melt.\aginjV \land \All m \leq n. \melt.\aginjc(n) \nequiv{m} \melt.\aginjc(m) } \\
   \mcore\melt \eqdef{}& \melt \\
-  \melt \mtimes \meltB \eqdef{}& (\melt.\agc, \setComp{n}{n \in \melt.\agV \land n \in \meltB.\agV \land \melt \nequiv{n} \meltB })
+  \melt \mtimes \meltB \eqdef{}& (\melt.\aginjc, \setComp{n}{n \in \melt.\aginjV \land n \in \meltB.\aginjV \land \melt \nequiv{n} \meltB })
 \end{align*}
 $\agm(-)$ is a locally non-expansive functor from $\COFEs$ to $\CMRAs$.
 
-You can think of the $\agc$ as a \emph{chain} of elements of $\cofe$ that has to converge only for $n \in \agV$ steps.
+You can think of the $\aginjc$ as a \emph{chain} of elements of $\cofe$ that has to converge only for $n \in \aginjV$ steps.
 The reason we store a chain, rather than a single element, is that $\agm(\cofe)$ needs to be a COFE itself, so we need to be able to give a limit for every chain of $\agm(\cofe)$.
-However, given such a chain, we cannot constructively define its limit: Clearly, the $\agV$ of the limit is the limit of the $\agV$ of the chain.
+However, given such a chain, we cannot constructively define its limit: Clearly, the $\aginjV$ of the limit is the limit of the $\aginjV$ of the chain.
 But what to pick for the actual data, for the element of $\cofe$?
-Only if $\agV = \mathbb{N}$ we have a chain of $\cofe$ that we can take a limit of; if the $\agV$ is smaller, the chain ``cancels'', \ie stops converging as we reach indices $n \notin \agV$.
+Only if $\aginjV = \mathbb{N}$ we have a chain of $\cofe$ that we can take a limit of; if the $\aginjV$ is smaller, the chain ``cancels'', \ie stops converging as we reach indices $n \notin \aginjV$.
 To mitigate this, we apply the usual construction to close a set; we go from elements of $\cofe$ to chains of $\cofe$.
 
-We define an injection $\ag$ into $\agm(\cofe)$ as follows:
-\[ \ag(x) \eqdef \record{\mathrm c \eqdef \Lam \any. x, \mathrm V \eqdef \mathbb{N}} \]
+We define an injection $\aginj$ into $\agm(\cofe)$ as follows:
+\[ \aginj(x) \eqdef \record{\mathrm c \eqdef \Lam \any. x, \mathrm V \eqdef \mathbb{N}} \]
 There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following:
 \begin{mathpar}
-  \axiomH{ag-val}{\ag(x) \in \mval_n}
+  \axiomH{ag-val}{\aginj(x) \in \mval_n}
 
-  \axiomH{ag-dup}{\ag(x) = \ag(x)\mtimes\ag(x)}
+  \axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)}
   
-  \axiomH{ag-agree}{\ag(x) \mtimes \ag(y) \in \mval_n \Ra x \nequiv{n} y}
+  \axiomH{ag-agree}{\aginj(x) \mtimes \aginj(y) \in \mval_n \Ra x \nequiv{n} y}
 \end{mathpar}
 
 \subsection{One-shot}
@@ -115,17 +115,17 @@ Given some CMRA $\monoid$, we define $\oneshotm(\monoid)$ as follows:
 \begin{align*}
   \oneshotm(\monoid) \eqdef{}& \ospending + \osshot(\monoid) + \munit + \bot \\
   \mval_n \eqdef{}& \set{\ospending, \munit} \cup \setComp{\osshot(\melt)}{\melt \in \mval_n}
-\end{align*}
-\begin{align*}
-  \mcore{\ospending} \eqdef{}& \munit & \mcore{\osshot(\melt)} \eqdef{}& \mcore\melt \\
-  \mcore{\munit} \eqdef{}& \munit &  \mcore{\bot} \eqdef{}& \bot
-\end{align*}
-\begin{align*}
+\\%\end{align*}
+%\begin{align*}
   \osshot(\melt) \mtimes \osshot(\meltB) \eqdef{}& \osshot(\melt \mtimes \meltB) \\
   \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\
   \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt)
-\end{align*}
+\end{align*}%
 The remaining cases of composition go to $\bot$.
+\begin{align*}
+  \mcore{\ospending} \eqdef{}& \munit & \mcore{\osshot(\melt)} \eqdef{}& \mcore\melt \\
+  \mcore{\munit} \eqdef{}& \munit &  \mcore{\bot} \eqdef{}& \bot
+\end{align*}
 The step-indexed equivalence is inductively defined as follows:
 \begin{mathpar}
   \axiom{\ospending \nequiv{n} \ospending}
@@ -149,33 +149,38 @@ We obtain the following frame-preserving updates:
   {\osshot(\melt) \mupd \setComp{\osshot(\meltB)}{\meltB \in \meltsB}}
 \end{mathpar}
 
-% \subsection{Exclusive monoid}
+\subsection{Exclusive CMRA}
 
-% Given a set $X$, we define a monoid such that at most one $x \in X$ can be owned.
-% Let $\exm{X}$ be the monoid with carrier $X \uplus \{ \munit \}$ and multiplication
-% \[
-% \melt \cdot \meltB \;\eqdef\;
-% \begin{cases}
-%   \melt & \mbox{if } \meltB = \munit \\
-%   \meltB & \mbox{if } \melt = \munit
-% \end{cases}
-% \]
+Given a cofe $\cofe$, we define a CMRA $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned:
+\begin{align*}
+  \exm(\cofe) \eqdef{}& \exinj(\cofe) + \munit + \bot \\
+  \mval_n \eqdef{}& \setComp{\melt\in\exm(\cofe)}{\melt \neq \bot} \\
+  \munit \mtimes \exinj(x) \eqdef{}& \exinj(x) \mtimes \munit \eqdef \exinj(x)
+\end{align*}
+The remaining cases of composition go to $\bot$.
+\begin{align*}
+  \mcore{\exinj(x)} \eqdef{}& \munit & \mcore{\munit} \eqdef{}& \munit &
+  \mcore{\bot} \eqdef{}& \bot
+\end{align*}
+The step-indexed equivalence is inductively defined as follows:
+\begin{mathpar}
+  \infer{x \nequiv{n} y}{\exinj(x) \nequiv{n} \exinj(y)}
 
-% The frame-preserving update
-% \begin{mathpar}
-% \inferH{ExUpd}
-%   {x \in X}
-%   {x \mupd \melt}
-% \end{mathpar}
-% is easily shown, as the only possible frame for $x$ is $\munit$.
+  \axiom{\munit \nequiv{n} \munit}
+
+  \axiom{\bot \nequiv{n} \bot}
+\end{mathpar}
+$\exm(-)$ is a locally non-expansive functor from $\COFEs$ to $\CMRAs$.
+
+We obtain the following frame-preserving update:
+\begin{mathpar}
+  \inferH{ex-update}{}
+  {\exinj(x) \mupd \exinj(y)}
+\end{mathpar}
 
-% Exclusive monoids are cancellative.
-% \begin{proof}[Proof of cancellativity]
-% If $\melt_f = \munit$, then the statement is trivial.
-% If $\melt_f \neq \munit$, then we must have $\melt = \meltB = \munit$, as otherwise one of the two products would be $\mzero$.
-% \end{proof}
 
 
+%TODO: These need syncing with Coq
 % \subsection{Finite Powerset Monoid}
 
 % Given an infinite set $X$, we define a monoid $\textmon{PowFin}$ with carrier $\mathcal{P}^{\textrm{fin}}(X)$ as follows:
@@ -190,16 +195,16 @@ We obtain the following frame-preserving updates:
 % \end{mathpar}
 
 % \begin{proof}[Proof of \ruleref{PowFinUpd}]
-% 	Assume some frame $\melt_f \sep \emptyset$. Since $\melt_f$ is finite and $X$ is infinite, there exists an $x \notin \melt_f$.
+% 	Assume some frame $\melt_\f \sep \emptyset$. Since $\melt_\f$ is finite and $X$ is infinite, there exists an $x \notin \melt_\f$.
 % 	Pick that for the result.
 % \end{proof}
 
 % The powerset monoids is cancellative.
 % \begin{proof}[Proof of cancellativity]
-% 	Let $\melt_f \mtimes \melt = \melt_f \mtimes \meltB \neq \mzero$.
-% 	So we have $\melt_f \sep \melt$ and $\melt_f \sep \meltB$, and we have to show $\melt = \meltB$.
-% 	Assume $x \in \melt$. Hence $x \in \melt_f \mtimes \melt$ and thus $x \in \melt_f \mtimes \meltB$.
-% 	By disjointness, $x \notin \melt_f$ and hence $x \in meltB$.
+% 	Let $\melt_\f \mtimes \melt = \melt_\f \mtimes \meltB \neq \mzero$.
+% 	So we have $\melt_\f \sep \melt$ and $\melt_\f \sep \meltB$, and we have to show $\melt = \meltB$.
+% 	Assume $x \in \melt$. Hence $x \in \melt_\f \mtimes \melt$ and thus $x \in \melt_\f \mtimes \meltB$.
+% 	By disjointness, $x \notin \melt_\f$ and hence $x \in meltB$.
 % 	The other direction works the same way.
 % \end{proof}
 
@@ -233,20 +238,20 @@ We obtain the following frame-preserving updates:
 % \begin{proof}[Proof of \ruleref{FracUpdLocal}]
 % 	Assume some $f \sep (q, a)$. If $f = \munit$, then $f \sep (q, b)$ is trivial for any $b \in B$. Just pick the one we obtain by choosing $\munit_M$ as the frame for $a$.
 	
-% 	In the interesting case, we have $f = (q_f, a_f)$.
-% 	Obtain $b$ such that $b \in B \land b \sep a_f$.
+% 	In the interesting case, we have $f = (q_\f, a_\f)$.
+% 	Obtain $b$ such that $b \in B \land b \sep a_\f$.
 % 	Then $(q, b) \sep f$, and we are done.
 % \end{proof}
 
 % $\fracm{M}$ is cancellative if $M$ is cancellative.
 % \begin{proof}[Proof of cancellativitiy]
-% If $\melt_f = \munit$, we are trivially done.
-% So let $\melt_f = (q_f, \melt_f')$.
+% If $\melt_\f = \munit$, we are trivially done.
+% So let $\melt_\f = (q_\f, \melt_\f')$.
 % If $\melt = \munit$, then $\meltB = \munit$ as otherwise the fractions could not match up.
 % Again, we are trivially done.
 % Similar so for $\meltB = \munit$.
 % So let $\melt = (q_a, \melt')$ and $\meltB = (q_b, \meltB')$.
-% We have $(q_f + q_a, \melt_f' \mtimes \melt') = (q_f + q_b, \melt_f' \mtimes \meltB')$.
+% We have $(q_\f + q_a, \melt_\f' \mtimes \melt') = (q_\f + q_b, \melt_\f' \mtimes \meltB')$.
 % We have to show $q_a = q_b$ and $\melt' = \meltB'$.
 % The first is trivial, the second follows from cancellativitiy of $M$.
 % \end{proof}
@@ -307,7 +312,7 @@ We obtain the following frame-preserving updates:
 % The frame-preserving update involves a rather unwieldy side-condition:
 % \begin{mathpar}
 % 	\inferH{AuthUpd}{
-% 		\All\melt_f\in\mcar{\monoid}. \melt\sep\meltB \land \melt\mtimes\melt_f \le \meltB\mtimes\melt_f \Ra \melt'\mtimes\melt_f \le \melt'\mtimes\meltB \and
+% 		\All\melt_\f\in\mcar{\monoid}. \melt\sep\meltB \land \melt\mtimes\melt_\f \le \meltB\mtimes\melt_\f \Ra \melt'\mtimes\melt_\f \le \melt'\mtimes\meltB \and
 % 		\melt' \sep \meltB
 % 	}{
 % 		\authfull \melt \mtimes \meltB, \authfrag \melt \mupd \authfull \melt' \mtimes \meltB, \authfrag \melt'
@@ -373,8 +378,6 @@ We obtain the following frame-preserving updates:
 % \subsection{STS with tokens monoid}
 % \label{sec:stsmon}
 
-% \ralf{This needs syncing with the Coq development.}
-
 % Given a state-transition system~(STS) $(\STSS, \ra)$, a set of tokens $\STSS$, and a labeling $\STSL: \STSS \ra \mathcal{P}(\STST)$ of \emph{protocol-owned} tokens for each state, we construct a monoid modeling an authoritative current state and permitting transitions given a \emph{bound} on the current state and a set of \emph{locally-owned} tokens.
 
 % The construction follows the idea of STSs as described in CaReSL \cite{caresl}.
@@ -389,11 +392,11 @@ We obtain the following frame-preserving updates:
 % We have
 % \begin{quote}
 % 	If $(s, T) \ra (s', T')$\\
-% 	and $T_f \sep (T \uplus \STSL(s))$,\\
-% 	then $\textsf{frame}(s, T_f) \ra \textsf{frame}(s', T_f)$.
+% 	and $T_\f \sep (T \uplus \STSL(s))$,\\
+% 	then $\textsf{frame}(s, T_\f) \ra \textsf{frame}(s', T_\f)$.
 % \end{quote}
 % \begin{proof}
-% This follows directly by framing the tokens in $\STST \setminus (T_f \uplus T \uplus \STSL(s))$ around the given transition, which yields $(s, \STST \setminus (T_f \uplus \STSL{T}(s))) \ra (s', T' \uplus (\STST \setminus (T_f \uplus T \uplus \STSL{T}(s))))$.
+% This follows directly by framing the tokens in $\STST \setminus (T_\f \uplus T \uplus \STSL(s))$ around the given transition, which yields $(s, \STST \setminus (T_\f \uplus \STSL{T}(s))) \ra (s', T' \uplus (\STST \setminus (T_\f \uplus T \uplus \STSL{T}(s))))$.
 % This is exactly what we have to show, since we know $\STSL(s) \uplus T = \STSL(s') \uplus T'$.
 % \end{proof}
 
@@ -415,8 +418,8 @@ We obtain the following frame-preserving updates:
 % 	 {(s, S, T) \mupd (s', \upclose(\{s'\}, T'), T')}
 % \end{mathpar}
 % \begin{proof}[Proof of \ruleref{StsStep}]
-% Assume some upwards-closed $S_f, T_f$ (the frame cannot be authoritative) s.t.\ $s \in S_f$ and $T_f \sep (T \uplus \STSL(s))$. We have to show that this frame combines with our final monoid element, which is the case if $s' \in S_f$ and $T_f \sep T'$.
-% By upward-closedness, it suffices to show $\textsf{frame}(s, T_f) \ststrans \textsf{frame}(s', T_f)$.
+% Assume some upwards-closed $S_\f, T_\f$ (the frame cannot be authoritative) s.t.\ $s \in S_\f$ and $T_\f \sep (T \uplus \STSL(s))$. We have to show that this frame combines with our final monoid element, which is the case if $s' \in S_\f$ and $T_\f \sep T'$.
+% By upward-closedness, it suffices to show $\textsf{frame}(s, T_\f) \ststrans \textsf{frame}(s', T_\f)$.
 % This follows by induction on the path $(s, T) \ststrans (s', T')$, and using the lemma proven above for each step.
 % \end{proof}
 
diff --git a/docs/derived.tex b/docs/derived.tex
index aeb47ab448177b2dded70244a082c99247011ff4..55a0c06fef6b30fb87e521ffab457bf3aa5fbe73 100644
--- a/docs/derived.tex
+++ b/docs/derived.tex
@@ -205,9 +205,64 @@ The following rules can be derived for Hoare triples.
 \end{mathparpagebreakable}
 
 \paragraph{Lifting of operational semantics.}
-We can derive some specialized forms of the lifting axioms for the operational semantics, as well as some forms that involve view shifts and Hoare triples.
+We can derive some specialized forms of the lifting axioms for the operational semantics.
+\begin{mathparpagebreakable}
+  \infer[wp-lift-atomic-step]
+  {\atomic(\expr_1) \and
+   \red(\expr_1, \state_1) \and
+   \All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f)}
+  {\later\ownPhys{\state_1} * \later\All \val_2, \state_2, \expr_\f. \pred(\ofval(\val), \state_2, \expr_\f) \land \ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
+
+  \infer[wp-lift-atomic-det-step]
+  {\atomic(\expr_1) \and
+   \red(\expr_1, \state_1) \and
+   \All \expr'_2, \state'_2, \expr_\f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_2 = \state_2' \land \toval(\expr_2') = \val_2 \land \expr_\f = \expr_\f'}
+  {\later\ownPhys{\state_1} * \later(\ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
+
+  \infer[wp-lift-pure-det-step]
+  {\toval(\expr_1) = \bot \and
+   \All \state_1. \red(\expr_1, \state_1) \and
+   \All \state_1, \expr_2', \state_2, \expr_\f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \expr_2 = \expr_2' \land \expr_\f = \expr_\f'}
+  {\later ( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
+\end{mathparpagebreakable}
 
-\ralf{Add these.}
+Furthermore, we derive some forms that directly involve view shifts and Hoare triples.
+\begin{mathparpagebreakable}
+  \infer[ht-lift-step]
+  {\mask_2 \subseteq \mask_1 \and
+   \toval(\expr_1) = \bot \and
+   \red(\expr_1, \state_1) \and
+   \All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f) \\\\
+   \prop \vs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\prop' \and
+   \All \expr_2, \state_2, \expr_\f. \pred(\expr_2, \state_2, \expr_\f) * \ownPhys{\state_2} * \prop' \vs[\mask_2][\mask_1] \propB_1 * \propB_2 \\\\
+   \All \expr_2, \state_2, \expr_\f. \hoare{\propB_1}{\expr_2}{\Ret\val.\propC}[\mask_1] \and
+   \All \expr_2, \state_2, \expr_\f. \hoare{\propB_2}{\expr_\f}{\Ret\any. \TRUE}[\top]}
+  { \hoare\prop{\expr_1}{\Ret\val.\propC}[\mask_1] }
+
+  \infer[ht-lift-atomic-step]
+  {\atomic(\expr_1) \and
+   \red(\expr_1, \state_1) \and
+   \All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f) \\\\
+   \prop \vs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\prop' \and
+   \All \expr_2, \state_2, \expr_\f. \hoare{\pred(\expr_2,\state_2,\expr_\f) * \prop}{\expr_\f}{\Ret\any. \TRUE}[\top]}
+  { \hoare{\later\ownPhys{\state_1} * \later\prop}{\expr_1}{\Ret\val.\Exists \state_2, \expr_\f. \ownPhys{\state_2} * \pred(\ofval(\expr_2),\state_2,\expr_\f)}[\mask_1] }
+
+  \infer[ht-lift-pure-step]
+  {\toval(\expr_1) = \bot \and
+   \All\state_1. \red(\expr_1, \state_1) \and
+   \All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_\f) \\\\
+   \All \expr_2, \expr_\f. \hoare{\pred(\expr_2,\expr_\f) * \prop}{\expr_2}{\Ret\val.\propB}[\mask_1] \and
+   \All \expr_2, \expr_\f. \hoare{\pred(\expr_2,\expr_\f) * \prop'}{\expr_\f}{\Ret\any. \TRUE}[\top]}
+  { \hoare{\later(\prop*\prop')}{\expr_1}{\Ret\val.\propB}[\mask_1] }
+
+  \infer[ht-lift-pure-det-step]
+  {\toval(\expr_1) = \bot \and
+   \All\state_1. \red(\expr_1, \state_1) \and
+   \All \state_1, \expr_2', \state_2, \expr_\f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \expr_2 = \expr_2' \land \expr_\f = \expr_\f' \\\\
+   \hoare{\prop}{\expr_2}{\Ret\val.\propB}[\mask_1] \and
+   \hoare{\prop'}{\expr_\f}{\Ret\any. \TRUE}[\top]}
+  { \hoare{\later(\prop*\prop')}{\expr_1}{\Ret\val.\propB}[\mask_1] }
+\end{mathparpagebreakable}
 
 \subsection{Global functor and ghost ownership}
 
@@ -282,6 +337,7 @@ We can now derive the following rules for this derived form of the invariant ass
   {\knowInv\namesp\prop \proves \propB \vs[\mask] \propC}
 \end{mathpar}
 
+% TODO: These need syncing with Coq
 % \subsection{STSs with interpretation}\label{sec:stsinterp}
 
 % Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.
@@ -382,21 +438,21 @@ We can now derive the following rules for this derived form of the invariant ass
 %   {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
 %  \and
 %  \axiomH{AuthOpen}
-%   {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_f.\; \later\pred_\bot(\melt \mtimes \melt_f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_f, \authfrag a:\auth{M}}}
+%   {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_\f.\; \later\pred_\bot(\melt \mtimes \melt_\f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_\f, \authfrag a:\auth{M}}}
 %  \and
 %  \axiomH{AuthClose}
-%   {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_f) * \ownGhost{\gname}{\authfull a \mtimes \melt_f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
+%   {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_\f) * \ownGhost{\gname}{\authfull a \mtimes \melt_\f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
 % \end{mathpar}
 
 % These view shifts in turn can be used to prove variants of the invariant rules:
 % \begin{mathpar}
 %  \inferH{Auth}
-%   {\forall \melt_f.\; \hoare{\later\pred_\bot(a \mtimes \melt_f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_f) * Q}[\mask]
+%   {\forall \melt_\f.\; \hoare{\later\pred_\bot(a \mtimes \melt_\f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_\f) * Q}[\mask]
 %    \and \physatomic{\expr}}
 %   {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
 %  \and
 %  \inferH{VSAuth}
-%   {\forall \melt_f.\; \later\pred_\bot(a \mtimes \melt_f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_f) * Q(\meltB)}
+%   {\forall \melt_\f.\; \later\pred_\bot(a \mtimes \melt_\f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_\f) * Q(\meltB)}
 %   {\Auth(M, \pred, \gname, \iname) \vdash
 %    \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
 %    \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
diff --git a/docs/iris.sty b/docs/iris.sty
index 7f79af763272adc5cbf913fb5f135c28ae76deb2..8b0cb49dbdba6af5a63e593ca2d115031bb8dacf 100644
--- a/docs/iris.sty
+++ b/docs/iris.sty
@@ -86,13 +86,15 @@
 
 \newcommand{\rs}{r}
 \newcommand{\rsB}{s}
+\newcommand{\rss}{R}
 
 \newcommand{\pres}{\pi}
 \newcommand{\wld}{w}
 \newcommand{\ghostRes}{g}
 
 %% Various pieces of syntax
-\newcommand{\wsat}[4]{#1 \models_{#2} #3; #4}
+\newcommand{\wsat}[3]{#1 \models_{#2} #3}
+\newcommand{\wsatpre}{\textdom{pre-wsat}}
 
 \newcommand{\wtt}[2]{#1 : #2} % well-typed term
 
@@ -114,6 +116,7 @@
 \newcommand{\UPred}{\textdom{UPred}}
 \newcommand{\mProp}{\textdom{Prop}} % meta-level prop
 \newcommand{\iProp}{\textdom{iProp}}
+\newcommand{\iPreProp}{\textdom{iPreProp}}
 \newcommand{\Wld}{\textdom{Wld}}
 \newcommand{\Res}{\textdom{Res}}
 
@@ -121,6 +124,7 @@
 \newcommand{\cofeB}{U}
 \newcommand{\COFEs}{\mathcal{U}} % category of COFEs
 \newcommand{\iFunc}{\Sigma}
+\newcommand{\fix}{\textdom{fix}}
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % CMRA (RESOURCE ALGEBRA) SYMBOLS & NOTATION & IDENTIFIERS
@@ -136,6 +140,8 @@
 \newcommand{\melts}{A}
 \newcommand{\meltsB}{B}
 
+\newcommand{\f}{\mathrm{f}} % for "frame"
+
 \newcommand{\mcar}[1]{|#1|}
 \newcommand{\mcarp}[1]{\mcar{#1}^{+}}
 \newcommand{\munit}{\varepsilon}
@@ -221,7 +227,7 @@
 \newcommand*{\knowInv}[2]{\boxedassert{#2}[#1]}
 \newcommand*{\ownGhost}[2]{\boxedassert[densely dashed]{#2}[#1]}
 \newcommand*{\ownGGhost}[1]{\boxedassert[densely dashed]{#1}}
-
+\newcommand{\ownM}[1]{\textlog{Own}(#1)}
 \newcommand{\ownPhys}[1]{\textlog{Phy}(#1)}
 
 %% View Shifts
@@ -286,7 +292,7 @@
 
 %% Some commonly used identifiers
 \newcommand{\timeless}[1]{\textlog{timeless}(#1)}
-\newcommand{\physatomic}[1]{\textlog{$#1$ phys.\ atomic}}
+\newcommand{\physatomic}[1]{\textlog{atomic}($#1$)}
 \newcommand{\infinite}{\textlog{infinite}}
 
 \newcommand{\Prop}{\textlog{Prop}}
@@ -321,13 +327,14 @@
 
 % Agreement
 \newcommand{\agm}{\ensuremath{\textmon{Ag}}}
-\newcommand{\ag}{\textlog{ag}}
+\newcommand{\aginj}{\textlog{ag}}
 
 % Fraction
 \newcommand{\fracm}{\ensuremath{\textmon{Frac}}}
 
 % Exclusive
 \newcommand{\exm}{\ensuremath{\textmon{Ex}}}
+\newcommand{\exinj}{\textlog{ex}}
 
 % Auth
 \newcommand{\authm}{\textmon{Auth}}
diff --git a/docs/iris.tex b/docs/iris.tex
index eeb23de910e9e08f2700b8f4cbd40d5b47d5ab76..2b93d245aacf0d4d866797f74db895bd43eb5c4b 100644
--- a/docs/iris.tex
+++ b/docs/iris.tex
@@ -33,8 +33,8 @@
 \endgroup\clearpage\begingroup
 \input{logic}
 \endgroup\clearpage\begingroup
-%\input{model}
-%\endgroup\clearpage\begingroup
+\input{model}
+\endgroup\clearpage\begingroup
 \input{derived}
 \endgroup\clearpage\begingroup
 \printbibliography
diff --git a/docs/logic.tex b/docs/logic.tex
index 9d89d639a1469635e9abc6b6b39b18b6112957a2..53ba97a9bab28ec15c0559d37efcb7828fa071ec 100644
--- a/docs/logic.tex
+++ b/docs/logic.tex
@@ -7,7 +7,7 @@ A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions}
 \end{mathpar}
 \item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{\bot})\]
   We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, \bot$. \\
-  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr'$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr'$ is forked off.
+  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr_\f$ is forked off.
 \item All values are stuck:
 \[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
 \item There is a predicate defining \emph{atomic} expressions satisfying
@@ -16,7 +16,7 @@ A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions}
   {\All\expr. \atomic(\expr) \Ra \toval(\expr) = \bot} \and
   {{
     \begin{inbox}
-\All\expr_1, \state_1, \expr_2, \state_2, \expr'. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr' \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
+\All\expr_1, \state_1, \expr_2, \state_2, \expr_\f. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr_\f \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
     \end{inbox}
 }}
 \end{mathpar}
@@ -26,7 +26,7 @@ It does not matter whether they fork off an arbitrary expression.
 
 \begin{defn}
   An expression $\expr$ and state $\state$ are \emph{reducible} (written $\red(\expr, \state)$) if
-  \[ \Exists \expr_2, \state_2, \expr'. \expr,\state \step \expr_2,\state_2,\expr' \]
+  \[ \Exists \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \]
 \end{defn}
 
 \begin{defn}[Context]
@@ -35,9 +35,9 @@ It does not matter whether they fork off an arbitrary expression.
   \item $\lctx$ does not turn non-values into values:\\
     $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
   \item One can perform reductions below $\lctx$:\\
-    $\All \expr_1, \state_1, \expr_2, \state_2, \expr'. \expr_1, \state_1 \step \expr_2,\state_2,\expr' \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr' $
+    $\All \expr_1, \state_1, \expr_2, \state_2, \expr_\f. \expr_1, \state_1 \step \expr_2,\state_2,\expr_\f \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr_\f $
   \item Reductions stay below $\lctx$ until there is a value in the hole:\\
-    $\All \expr_1', \state_1, \expr_2, \state_2, \expr'. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr' \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr' $
+    $\All \expr_1', \state_1, \expr_2, \state_2, \expr_\f. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr_\f \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr_\f $
   \end{enumerate}
 \end{defn}
 
@@ -54,9 +54,9 @@ For any language $\Lang$, we define the corresponding thread-pool semantics.
   \cfg{\tpool'}{\state'}}
 \begin{mathpar}
 \infer
-  {\expr_1, \state_1 \step \expr_2, \state_2, \expr' \and \expr' \neq ()}
+  {\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f \and \expr_\f \neq \bot}
   {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
-     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr']}{\state'}}
+     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr_\f]}{\state'}}
 \and\infer
   {\expr_1, \state_1 \step \expr_2, \state_2}
   {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
@@ -124,7 +124,7 @@ Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\t
     \prop * \prop \mid
     \prop \wand \prop \mid
 \\&
-    \MU \var:\type. \pred  \mid
+    \MU \var:\type. \term  \mid
     \Exists \var:\type. \prop \mid
     \All \var:\type. \prop \mid
 \\&
@@ -136,7 +136,7 @@ Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\t
     \pvs[\term][\term] \prop\mid
     \wpre{\term}[\term]{\Ret\var.\term}
 \end{align*}
-Recursive predicates must be \emph{guarded}: in $\MU \var. \pred$, the variable $\var$ can only appear under the later $\later$ modality.
+Recursive predicates must be \emph{guarded}: in $\MU \var. \term$, the variable $\var$ can only appear under the later $\later$ modality.
 
 Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
 We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
@@ -170,8 +170,6 @@ We introduce additional metavariables ranging over terms and generally let the c
 \]
 
 \paragraph{Variable conventions.}
-We often abuse notation, using the preceding \emph{term} meta-variables to range over (bound) \emph{variables}.
-We omit type annotations in binders, when the type is clear from context.
 We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
 
 
@@ -538,7 +536,7 @@ This is entirely standard.
 {\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}
 
 \infer[pvs-mask-frame]
-{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_f][\mask_2 \uplus \mask_f] \prop}
+{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_\f][\mask_2 \uplus \mask_\f] \prop}
 
 \infer[pvs-frame]
 {}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}
@@ -596,17 +594,19 @@ This is entirely standard.
   {\mask_2 \subseteq \mask_1 \and
    \toval(\expr_1) = \bot \and
    \red(\expr_1, \state_1) \and
-   \All \expr_2, \state_2, \expr'. \expr_1,\state_1 \step \expr_2,\state_2,\expr' \Ra \pred(\expr_2,\state_2,\expr')}
-  {\pvs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr'. \pred(\expr_2, \state_2, \expr') \land \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr'}[\top]{\Ret\var.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
+   \All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f)}
+  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
+        ~~\pvs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr_\f. \pred(\expr_2, \state_2, \expr_\f) \land {}\\\qquad\qquad\qquad\qquad\qquad \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
+      \end{inbox}} }
 
   \infer[wp-lift-pure-step]
   {\toval(\expr_1) = \bot \and
    \All \state_1. \red(\expr_1, \state_1) \and
-   \All \state_1, \expr_2, \state_2, \expr'. \expr_1,\state_1 \step \expr_2,\state_2,\expr' \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr')}
-  {\later\All \expr_2, \expr'. \pred(\expr_2, \expr')  \wand \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr'}[\top]{\Ret\var.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
+   \All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_\f)}
+  {\later\All \expr_2, \expr_\f. \pred(\expr_2, \expr_\f)  \Ra \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
 \end{mathpar}
 
-Here we define $\wpre{\expr'}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr' = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
+Here we define $\wpre{\expr_\f}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr_\f = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
 
 \subsection{Adequacy}
 
diff --git a/docs/model.tex b/docs/model.tex
index 2a7fd7bc71354630fdc45237c9731c18a3fdf6fc..ea2a89bdc89af2ed6f544bbb4c4a4a10d29c5add 100644
--- a/docs/model.tex
+++ b/docs/model.tex
@@ -1,528 +1,208 @@
 \section{Model and semantics}
 
-\ralf{What also needs to be done here: Define uPred and its later function; define black later; define the resource CMRA}
-
 The semantics closely follows the ideas laid out in~\cite{catlogic}.
-We just repeat some of the most important definitions here.
 
-An \emph{ordered family of equivalence relations} (o.f.e.\@) is a pair
-$(X,(\nequiv{n})_{n\in\mathbb{N}})$, with $X$ a set, and each $\nequiv{n}$ 
-an equivalence relation over $X$ satisfying
-\begin{itemize}
-	\item $\All x,x'. x \nequiv{0} x',$
-	\item $\All x,x',n. x \nequiv{n+1} x' \implies x \nequiv{n} x',$
-	\item $\All x,x'. (\All n. x\nequiv{n} x') \implies x = x'.$
-\end{itemize}
-\a
-Let $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and
-$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$ be o.f.e.'s. A function $f:
-X\to Y$ is \emph{non-expansive} if,   for all $x$, $x'$ and $n$,
-\[
-x \nequivset{n}{X} x' \implies 
-fx \nequivset{n}{Y} f x'.
-\]
-Let $(X,(\nequiv{n})_{n\in\mathbb{N}})$ be an o.f.e.
-A sequence $(x_i)_{i\in\mathbb{N}}$ of elements in $X$ is a
-\emph{chain} (aka \emph{Cauchy sequence}) if
-\[
-\All k. \Exists n. \All i,j\geq n. x_i \nequiv{k} x_j.
-\]
-A \emph{limit} of a chain $(x_i)_{i\in\mathbb{N}}$ is an element
-$x\in X$ such that
-\[
-\All n. \Exists k. \All i\geq k. x_i \nequiv{n} x.
-\]
-An o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$ is \emph{complete} 
-if all chains have a limit.
-A complete o.f.e.\ is called a c.o.f.e.\ (pronounced ``coffee'').
-When the family of equivalence relations is clear from context we
-simply
-write $X$ for a c.o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$.
+\subsection{Generic model of base logic}
+\label{sec:upred-logic}
 
+The base logic including equality, later, always, and a notion of ownership is defined on $\UPred(\monoid)$ for any CMRA $\monoid$.
 
-Let $\cal U$ be the category of c.o.f.e.'s and nonexpansive maps.
-
-Products and function spaces are defined as follows.
-For c.o.f.e.'s $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and
-$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$, their product 
-is 
-$(X\times Y, (\nequiv{n})_{n\in\mathbb{N}}),$
-where
-\[
-(x,y) \nequiv{n} (x',y') \iff
-x \nequiv{n} x' \land
-y \nequiv{n} y'.
-\]
-The function space is
-\[
-(\{\, f : X\to Y \mid f \text{ is non-expansive}\,\}, (\nequiv{n})_{n\in\mathbb{N}}),
-\]
-where
-\[
-f \nequiv{n} g \iff
-\All x. f(x)  \nequiv{n}  g(x).
-\]
-
-For a c.o.f.e.\ $(X,(\nequiv{n}_{n\in\mathbb{N}}))$, 
-$\latert (X,(\nequiv{n}_{n\in\mathbb{N}}))$ is the c.o.f.e.\@
-$(X,(\nequivB{n}_{n\in\mathbb{N}}))$,  where
-\[
-x \nequivB{n} x' \iff \begin{cases}
-\top	&\IF n=0 \\
-x \nequiv{n-1} x' &\IF n>0
-\end{cases}
-\]
-
-(Sidenote: $\latert$ extends to a functor on $\cal U$ by the identity
-action on morphisms).
-
-
-\subsection{Semantic structures: propositions}
-\ralf{This needs to be synced with the Coq development again.}
-
-\[
-\begin{array}[t]{rcl}
-%  \protStatus &::=& \enabled \ALT \disabled \\[0.4em]
-\textdom{Res} &\eqdef&
-\{\, \rs = (\pres, \ghostRes) \mid
-\pres \in \textdom{State} \uplus \{\munit\} \land \ghostRes \in \mcarp{\monoid} \,\} \\[0.5em]
-(\pres, \ghostRes) \rtimes
-(\pres', \ghostRes') &\eqdef&
-\begin{cases}
-(\pres, \ghostRes \mtimes \ghostRes')  & \mbox{if $\pres' = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} \\
-(\pres', \ghostRes \mtimes \ghostRes') & \mbox{if $\pres = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$}
-\end{cases}
-\\[0.5em]
-%
-\rs \leq \rs' & \eqdef &
-\Exists \rs''. \rs' = \rs \rtimes \rs''\\[1em]
-%
-\UPred(\textdom{Res}) &\eqdef& 
-\{\, p \subseteq \mathbb{N} \times \textdom{Res} \mid
-\All (k,\rs) \in p.
-\All j\leq k.
-\All \rs' \geq \rs.
-(j,\rs')\in p \,\}\\[0.5em]
-\restr{p}{k} &\eqdef& 
-\{\, (j, \rs) \in p \mid j < k \,\}\\[0.5em]
-p \nequiv{n} q & \eqdef & \restr{p}{n} = \restr{q}{n}\\[1em]
-%
-\textdom{PreProp} & \cong  &
-\latert\big( \textdom{World} \monra \UPred(\textdom{Res})
-\big)\\[0.5em]
-%
-\textdom{World} & \eqdef &
-\mathbb{N} \fpfn \textdom{PreProp}\\[0.5em]
-%
-w \nequiv{n} w' & \eqdef & 
-n = 0 \lor
-\bigl(\dom(w) = \dom(w') \land \All i\in\dom(w). w(i) \nequiv{n} w'(i)\bigr)
-\\[0.5em]
-%
-w \leq w' & \eqdef & 
-\dom(w) \subseteq \dom(w') \land \All i \in \dom(w). w(i) = w'(i) 
-\\[0.5em]
-%
-\textdom{Prop} & \eqdef & \textdom{World} \monra \UPred(\textdom{Res})
-\end{array}
-\]
+\typedsection{Interpretation of base assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \UPred(\monoid)}
+Remember that $\UPred(\monoid)$ is isomorphic to $\monoid \monra \SProp$.
+We are thus going to define the assertions as mapping CMRA elements to sets of step-indices.
 
-For $p,q\in\UPred(\textdom{Res})$ with $p \nequiv{n} q$ defined
-as above, $\UPred(\textdom{Res})$ is a 
-c.o.f.e.
+We introduce an additional logical connective $\ownM\melt$, which will later be used to encode all of $\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$.
 
-$\textdom{Prop}$ is a c.o.f.e., which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}.
-We do not need to consider how the object is constructed. 
-We only need the isomorphism, given by maps
 \begin{align*}
-	\wIso &: \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) \to \textdom{PreProp} \\
-	\wIso^{-1} &: \textdom{PreProp} \to \latert \bigl(World \monra \UPred(\textdom{Res})\bigr)
+	\Sem{\vctx \proves t =_\type u : \Prop}_\gamma &\eqdef
+	\Lam \any. \setComp{n}{\Sem{\vctx \proves t : \type}_\gamma \nequiv{n} \Sem{\vctx \proves u : \type}_\gamma} \\
+	\Sem{\vctx \proves \FALSE : \Prop}_\gamma &\eqdef \Lam \any. \emptyset \\
+	\Sem{\vctx \proves \TRUE : \Prop}_\gamma &\eqdef \Lam \any. \mathbb{N} \\
+	\Sem{\vctx \proves \prop \land \propB : \Prop}_\gamma &\eqdef
+	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cap \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
+	\Sem{\vctx \proves \prop \lor \propB : \Prop}_\gamma &\eqdef
+	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
+	\Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef
+	\Lam \melt. \setComp{n}{\begin{aligned}
+            \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\
+            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt)\end{aligned}}\\
+	\Sem{\vctx \proves \All x : \type. \prop : \Prop}_\gamma &\eqdef
+	\Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
+	\Sem{\vctx \proves \Exists x : \type. \prop : \Prop}_\gamma &\eqdef
+        \Lam \melt. \setComp{n}{ \Exists v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
+  ~\\
+	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\
+	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\
+	\Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}\Exists \meltB_1, \meltB_2. &\melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \land {}\\& n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB_1) \land n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB_2)\end{aligned}}
+\\
+	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef
+	\Lam \melt. \setComp{n}{\begin{aligned}
+            \All m, \meltB.& m \leq n \land  \melt\mtimes\meltB \in \mval_m \Ra {} \\
+            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\
+        \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\melt \mincl[n] \meltB}  \\
+        \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\melt \in \mval_n} \\
 \end{align*}
-which are inverses to each other. 
-Note: this is an isomorphism in $\cal U$, i.e., $\wIso$ and
-$\wIso^{-1}$ are both non-expansive.
 
-$\textdom{World}$ is a c.o.f.e.\ with the family of equivalence
-relations defined as shown above.
+For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone.
 
-\subsection{Semantic structures: types and environments}
 
-For a set $X$, write $\Delta X$ for the discrete c.o.f.e.\ with $x \nequiv{n}
-x'$ iff $n = 0$ or $x = x'$
-\[
-\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
-\Sem{\textsort{Unit}} &\eqdef& \Delta \{ \star \} \\
-\Sem{\textsort{InvName}} &\eqdef& \Delta \mathbb{N}  \\
-\Sem{\textsort{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
-\Sem{\textsort{Monoid}} &\eqdef& \Delta |\monoid|
-\end{array}
-\qquad\qquad
-\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
-\Sem{\textsort{Val}} &\eqdef& \Delta \textdom{Val} \\
-\Sem{\textsort{Exp}} &\eqdef& \Delta \textdom{Exp} \\
-\Sem{\textsort{Ectx}} &\eqdef& \Delta \textdom{Ectx} \\
-\Sem{\textsort{State}} &\eqdef& \Delta \textdom{State} \\
-\end{array}
-\qquad\qquad
-\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
-\Sem{\sort \times \sort'} &\eqdef& \Sem{\sort} \times \Sem{\sort} \\
-\Sem{\sort \to \sort'} &\eqdef& \Sem{\sort} \to \Sem{\sort} \\
-\Sem{\Prop} &\eqdef& \textdom{Prop} \\
-\end{array}
-\]
-
-The balance of our signature $\Sig$ is interpreted as follows.
-For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define
-\[
-\Sem{\type} \eqdef X_\type
-\]
-For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick an arrow $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \to \Sem{\type_{n+1}}$ in $\cal U$.
-
-An environment $\vctx$ is interpreted as the set of
-maps $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
-$\rho(x)\in\Sem{\vctx(x)}$,
-and 
-$\rho\nequiv{n} \rho' \iff n=0 \lor \bigl(\dom(\rho)=\dom(\rho') \land
-\All x\in\dom(\rho). \rho(x) \nequiv{n} \rho'(x)\bigr)$.
-
-\ralf{Re-check all the following definitions with the Coq development.}
-%\typedsection{Validity}{valid : \pset{\textdom{Prop}} \in Sets}
-%
-%\begin{align*}
-%valid(p) &\iff \All n \in \mathbb{N}. \All \rs \in \textdom{Res}. \All W \in \textdom{World}. (n, \rs) \in p(W)
-%\end{align*}
-
-\typedsection{Later modality}{\later : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
+\subsection{Iris model}
 
+\paragraph{Semantic domain of assertions.}
+The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$.
+We start by defining the functor that assembles the CMRAs we need to the global resource CMRA:
 \begin{align*}
-	\later p &\eqdef \Lam W. \{\, (n + 1, r) \mid (n, r) \in p(W) \,\} \cup \{\, (0, r) \mid r \in \textdom{Res} \,\}
+  \textdom{ResF}(\cofe) \eqdef{}& \record{\wld: \agm(\latert \cofe), \pres: \exm(\textdom{State}), \ghostRes: F(\cofe)}
 \end{align*}
-\begin{lem}
-	$\later{}$ is well-defined: $\later {p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\later{}$ itself is a \emph{contractive} map.
-\end{lem}
-
-\typedsection{Always modality}{\always{} : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
+where $F$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$.
+$\textdom{ResF}(\cofe)$ is a CMRA by lifting the individual CMRAs pointwise.
+Furthermore, if $F$ is locally contractive, then so is $\textdom{ResF}(-)$.
 
+Now we can write down the recursive domain equation:
+\[ \iPreProp \cong \UPred(\textdom{ResF}(\iPreProp)) \]
+$\iPreProp$ is a COFE, which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}.
+We do not need to consider how the object is constructed. 
+We only need the isomorphism, given by
 \begin{align*}
-	\always{p} \eqdef \Lam W. \{\, (n, r) \mid (n, \munit) \in p(W) \,\}
+  \Res &\eqdef \textdom{ResF}(\iPreProp) \\
+  \iProp &\eqdef \UPred(\Res) \\
+	\wIso &: \iProp \nfn \iPreProp \\
+	\wIso^{-1} &: \iPreProp \nfn \iProp
 \end{align*}
-\begin{lem}
-	$\always{}$ is well-defined: $\always{p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\always{}$ itself is a non-expansive map.
-\end{lem}
 
-% PDS: p \Rightarrow q not defined.
-%\begin{lem}\label{lem:always-impl-valid}
-%\begin{align*}
-%&\forall p, q \in \textdom{Prop}.~\\
-%&\qquad
-%  (\forall n \in \mathbb{N}.~\forall \rs \in \textdom{Res}.~\forall W \in \textdom{World}.~(n, \rs) \in p(W) \Rightarrow (n, \rs) \in q(W)) \Leftrightarrow~valid(\always{(p \Rightarrow q)})
-%\end{align*}
-%\end{lem}
+We then pick $\iProp$ as the interpretation of $\Prop$:
+\[ \Sem{\Prop} \eqdef \iProp \]
+
+
+\paragraph{Interpretation of assertions.}
+$\iProp$ is a $\UPred$, and hence the definitions from \Sref{sec:upred-logic} apply.
+We only have to define the missing connectives, the most interesting bits being primitive view shifts and weakest preconditions.
 
-\typedsection{Invariant definition}{inv : \Delta(\mathbb{N}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
+\typedsection{World satisfaction}{\wsat{-}{-}{-} : 
+	\Delta\textdom{State} \times
+	\Delta\pset{\mathbb{N}} \times
+	\textdom{Res} \nfn \SProp }
 \begin{align*}
-	\mathit{inv}(\iota, p) &\eqdef \Lam W. \{\, (n, r) \mid \iota\in\dom(W) \land W(\iota) \nequiv{n+1}_{\textdom{PreProp}} \wIso(p) \,\}
+  \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t]
+    \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land 
+    \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\
+    \All\iname \in \mask, \prop. \rs.\wld(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
+  \end{inbox}\\
+	\wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))}
 \end{align*}
-\begin{lem}
-	$\mathit{inv}$ is well-defined: $\mathit{inv}(\iota, p)$ is a valid proposition (this amounts to showing non-expansiveness), and $\mathit{inv}$ itself is a non-expansive map.
-\end{lem}
 
-\typedsection{World satisfaction}{\wsat{-}{-}{-}{-} : 
-	\textdom{State} \times
-	\pset{\mathbb{N}} \times
-	\textdom{Res} \times
-	\textdom{World} \to \psetdown{\mathbb{N}} \in {\cal U}}
-\ralf{Make this Dave-compatible: Explicitly compose all the things in $s$}
+\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp}
 \begin{align*}
-	\wsat{\state}{\mask}{\rs}{W} &=
-	\begin{aligned}[t]
-		\{\, n + 1 \in \mathbb{N} \mid &\Exists  \rsB:\mathbb{N} \fpfn \textdom{Res}. (\rs \rtimes \rsB).\pres = \state \land{}\\
-		&\quad \All \iota \in \dom(W). \iota \in \dom(W) \leftrightarrow \iota \in \dom(\rsB) \land {}\\
-		&\quad\quad \iota \in \mask \ra (n, \rsB(\iota)) \in \wIso^{-1}(W(\iota))(W) \,\} \cup \{ 0 \}
-	\end{aligned}
+	\mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned}
+            \All \rs_\f, m, \mask_\f, \state.& 0 < m \leq n \land (\mask_1 \cup \mask_2) \sep \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
+            \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f}
+          \end{aligned}}
 \end{align*}
-\begin{lem}\label{lem:fullsat-nonexpansive}
-	$\wsat{-}{-}{-}{-}$ is well-defined: It maps into $\psetdown{\mathbb{N}}$. (There is no need for it to be a non-expansive map, it doesn't itself live in $\cal U$.)
-\end{lem}
 
-\begin{lem}\label{lem:fullsat-weaken-mask}
-	\begin{align*}
-		\MoveEqLeft
-		\All \state \in \Delta(\textdom{State}).
-		\All \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).
-		\All \rs, \rsB \in \Delta(\textdom{Res}).
-		\All W \in \textdom{World}. \\&
-		\mask_1 \subseteq \mask_2 \implies (\wsat{\state}{\mask_2}{\rs}{W}) \subseteq (\wsat{\state}{\mask_1}{\rs}{W})
-	\end{align*}
-\end{lem}
-
-\begin{lem}\label{lem:nequal_ext_world}
-	\begin{align*}
-		&
-		\All n \in \mathbb{N}.
-		\All W_1, W_1', W_2 \in \textdom{World}.
-		W_1 \nequiv{n} W_2 \land W_1 \leq W_1' \implies \Exists W_2' \in \textdom{World}. W_1' \nequiv{n} W_2' \land W_2 \leq W_2'
-	\end{align*}
-\end{lem}
-
-\typedsection{Timeless}{\textit{timeless} : \textdom{Prop} \to \textdom{Prop}}
+\typedsection{Weakest precondition}{\mathit{wp}_{-}(-, -) : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \nfn \iProp) \nfn \iProp}
 
+$\textdom{wp}$ is defined as the fixed-point of a contractive function.
 \begin{align*}
-	\textit{timeless}(p) \eqdef 
-	\begin{aligned}[t]
-		\Lam W.
-		\{\, (n, r) &\mid \All W' \geq W. \All k \leq n. \All r' \in \textdom{Res}. \\
-		&\qquad
-		k > 0 \land (k - 1, r') \in p(W') \implies (k, r') \in p(W') \,\}
-	\end{aligned}
+  \textdom{pre-wp}(\textdom{wp})(\mask, \expr, \pred) &\eqdef \Lam\rs. \setComp{n}{\begin{aligned}
+        \All &\rs_\f, m, \mask_\f, \state. 0 \leq m < n \land \mask \sep \mask_\f \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\
+        &(\All\val. \toval(\expr) = \val \Ra \Exists \rsB. m+1 \in \prop(\rs') \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs' \mtimes \rs_\f}) \land {}\\
+        &(\toval(\expr) = \bot \land 0 < m \Ra \red(\expr, \state) \land \All \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \Ra {}\\
+        &\qquad \Exists \rsB_1, \rsB_2. m \in \wsat\state{\mask \cup \mask_\f}{\rs' \mtimes \rs_\f} \land  m \in \textdom{wp}(\mask, \expr_2, \pred)(\rsB_1) \land {}&\\
+        &\qquad\qquad (\expr_\f = \bot \lor m \in \textdom{wp}(\top, \expr_\f, \Lam\any.\Lam\any.\mathbb{N})(\rsB_2))
+    \end{aligned}} \\
+  \textdom{wp}_\mask(\expr, \pred) &\eqdef \mathit{fix}(\textdom{pre-wp})(\mask, \expr, \pred)
 \end{align*}
 
-\begin{lem}
-	\textit{timeless} is well-defined: \textit{timeless}(p) is a valid proposition, and \textit{timeless} itself is a non-expansive map.
-\end{lem}
 
-% PDS: \Ra undefined.
-%\begin{lem}
-%\begin{align*}
-%&
-%  \All p \in \textdom{Prop}.
-%  \All \mask \in \pset{\mathbb{N}}.
-%valid(\textit{timeless}(p) \Ra (\later p \vs[\mask][\mask] p))
-%\end{align*}
-%\end{lem}
+\typedsection{Interpretation of program logic assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \iProp}
 
-\typedsection{View-shift}{\mathit{vs} : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
 \begin{align*}
-	\mathit{vs}_{\mask_1}^{\mask_2}(q) &= \Lam W.
-	\begin{aligned}[t]
-		\{\, (n, \rs) &\mid \All W_F \geq W. \All \rs_F, \mask_F, \state. \All k \leq n.\\
-		&\qquad 
-		k \in (\wsat{\state}{\mask_1 \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \land k > 0 \land \mask_F \sep (\mask_1 \cup \mask_2) \implies{} \\
-		&\qquad
-		\Exists W' \geq W_F. \Exists \rs'. k \in (\wsat{\state}{\mask_2 \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(W')
-		\,\}
-	\end{aligned}
+	\Sem{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &\eqdef \ownM{[\iname \mapsto \aginj(\latertinj(\wIso(\prop)))], \munit, \munit} \\
+	\Sem{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &\eqdef \ownM{\munit, \munit, \melt} \\
+	\Sem{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &\eqdef \ownM{\munit, \exinj(\state), \munit} \\
+	\Sem{\vctx \proves \pvs[\mask_1][\mask_2] \prop : \Prop}_\gamma &\eqdef
+	\textdom{pvs}^{\Sem{\vctx \proves \mask_2 : \textlog{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\
+	\Sem{\vctx \proves \wpre{\expr}[\mask]{\Ret\var.\prop} : \Prop}_\gamma &\eqdef
+	\textdom{wp}_{\Sem{\vctx \proves \mask : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textlog{Expr}}_\gamma, \Lam\val. \Sem{\vctx \proves \prop : \Prop}_{\gamma[\var\mapsto\val]})
 \end{align*}
-\begin{lem}
-	$\mathit{vs}$ is well-defined: $\mathit{vs}_{\mask_1}^{\mask_2}(q)$ is a valid proposition, and $\mathit{vs}$ is a non-expansive map.
-\end{lem}
-
-
-%\begin{lem}\label{lem:prim_view_shift_trans}
-%\begin{align*}
-%\MoveEqLeft
-%  \All \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).
-%  \All p, q \in \textdom{Prop}. \All W \in \textdom{World}.
-%  \All n \in \mathbb{N}.\\
-%&
-%  \mask_2 \subseteq \mask_1 \cup \mask_3 \land
-%  \bigl(\All W' \geq W. \All r \in \textdom{Res}. \All k \leq n. (k, r) \in p(W') \implies (k, r) \in vs_{\mask_2}^{\mask_3}(q)(W')\bigr) \\
-%&\qquad
-%  {}\implies \All r \in \textdom{Res}. (n, r) \in vs_{\mask_1}^{\mask_2}(p)(W) \implies (n, r) \in vs_{\mask_1}^{\mask_3}(q)(W)
-%\end{align*}
-%\end{lem}
-
-% PDS: E_1 ==>> E_2 undefined.
-%\begin{lem}
-%\begin{align*}
-%&
-%  \forall \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).~
-%  \forall p_1, p_2, p_3 \in \textdom{Prop}.~\\
-%&\qquad
-%  \mask_2 \subseteq \mask_1 \cup \mask_3 \Rightarrow
-%  valid(((p_1 \vs[\mask_1][\mask_2] p_2) \land (p_2 \vs[\mask_2][\mask_3] p_3)) \Rightarrow (p_1 \vs[\mask_1][\mask_3] p_3))
-%\end{align*}
-%\end{lem}
-
-%\begin{lem}
-%\begin{align*}
-%\MoveEqLeft
-%  \All \iota \in \mathbb{N}.
-%  \All p \in \textdom{Prop}.
-%  \All W \in \textdom{World}.
-%  \All \rs \in \textdom{Res}.
-%  \All n \in \mathbb{N}. \\
-%&
-%  (n, \rs) \in inv(\iota, p)(W) \implies (n, \rs) \in vs_{\{ \iota \}}^{\emptyset}(\later p)(W)
-%\end{align*}
-%\end{lem}
 
-% PDS: * undefined.
-%\begin{lem}
-%\begin{align*}
-%&
-%  \forall \iota \in \mathbb{N}.~
-%  \forall p \in \textdom{Prop}.~
-%  \forall W \in \textdom{World}.~
-%  \forall \rs \in \textdom{Res}.~
-%  \forall n \in \mathbb{N}.~\\
-%&\qquad
-%  (n, \rs) \in (inv(\iota, p) * \later p)(W) \Rightarrow (n, \rs) \in vs^{\{ \iota \}}_{\emptyset}(\top)(W)
-%\end{align*}
-%\end{lem}
+\paragraph{Remaining semantic domains, and interpretation of non-assertion terms.}
 
-% \begin{lem}
-% \begin{align*}
-% &
-%   \forall \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).~
-%   valid(\bot \vs[\mask_1][\mask_2] \bot)
-% \end{align*}
-% \end{lem}
-
-% PDS: E_1 ==>> E_2 undefined.
-%\begin{lem}
-%\begin{align*}
-%&
-%  \forall p, q \in \textdom{Prop}.~
-%  \forall \mask \in \pset{\mathbb{N}}.~
-%valid(\always{(p \Rightarrow q)} \Rightarrow (p \vs[\mask][\mask] q))
-%\end{align*}
-%\end{lem}
-
-% PDS: E # E' and E_1 ==>> E_2 undefined.
-%\begin{lem}
-%\begin{align*}
-%&
-%  \forall p_1, p_2, p_3 \in \textdom{Prop}.~
-%  \forall \mask_1, \mask_2, \mask \in \pset{\mathbb{N}}.~
-%valid(\mask \sep \mask_1 \Ra \mask \sep \mask_2 \Ra (p_1 \vs[\mask_1][\mask_2] p_2) \Rightarrow (p_1 * p_3 \vs[\mask_1 \cup \mask][\mask_2 \cup \mask] p_2 * p_3))
-%\end{align*}
-%\end{lem}
-
-\typedsection{Weakest precondition}{\mathit{wp} : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \to \textdom{Prop}) \to \textdom{Prop} \in {\cal U}}
-
-% \begin{align*}
-% 	\mathit{wp}_\mask(\expr, q) &\eqdef \Lam W.
-% 	\begin{aligned}[t]
-% 		\{\, (n, \rs) &\mid \All W_F \geq W; k \leq n; \rs_F; \state; \mask_F \sep \mask. k > 0 \land k \in (\wsat{\state}{\mask \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \implies{}\\
-% 		&\qquad
-% 		(\expr \in \textdom{Val} \implies \Exists W' \geq W_F. \Exists \rs'. \\
-% 		&\qquad\qquad
-% 		k \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(\expr)(W'))~\land \\
-% 		&\qquad
-% 		(\All\ectx,\expr_0,\expr'_0,\state'. \expr = \ectx[\expr_0] \land \cfg{\state}{\expr_0} \step \cfg{\state'}{\expr'_0} \implies \Exists W' \geq W_F. \Exists \rs'. \\
-% 		&\qquad\qquad
-% 		k - 1 \in (\wsat{\state'}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k-1, \rs') \in wp_\mask(\ectx[\expr_0'], q)(W'))~\land \\
-% 		&\qquad
-% 		(\All\ectx,\expr'. \expr = \ectx[\fork{\expr'}] \implies \Exists W' \geq W_F. \Exists \rs', \rs_1', \rs_2'. \\
-% 		&\qquad\qquad
-% 		k - 1 \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land \rs' = \rs_1' \rtimes \rs_2'~\land \\
-% 		&\qquad\qquad
-% 		(k-1, \rs_1') \in \mathit{wp}_\mask(\ectx[\textsf{fRet}], q)(W') \land
-% 		(k-1, \rs_2') \in \mathit{wp}_\top(\expr', \Lam\any. \top)(W'))
-% 		\,\}
-% 	\end{aligned}
-% \end{align*}
-\begin{lem}
-	$\mathit{wp}$ is well-defined: $\mathit{wp}_{\mask}(\expr, q)$ is a valid proposition, and $\mathit{wp}$ is a non-expansive map. Besides, the dependency on the recursive occurrence is contractive, so $\mathit{wp}$ has a fixed-point.
-\end{lem}
-
-\begin{lem}
-	$\mathit{wp}$ on values and non-mask-changing $\mathit{vs}$ agree:
-	\[ \mathit{wp}_\mask(\val, q) = \mathit{vs}_{\mask}^{\mask}(q \: \val)  \]
-\end{lem}
-
-\typedsection{Interpretation of terms}{\Sem{\vctx \proves \term : \sort} : \Sem{\vctx} \to \Sem{\sort} \in {\cal U}}
+The remaining domains are interpreted as follows:
+\[
+\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
+\Sem{\textlog{InvName}} &\eqdef& \Delta \mathbb{N}  \\
+\Sem{\textlog{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
+\Sem{\textlog{M}} &\eqdef& F(\iProp)
+\end{array}
+\qquad\qquad
+\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
+\Sem{\textlog{Val}} &\eqdef& \Delta \textdom{Val} \\
+\Sem{\textlog{Expr}} &\eqdef& \Delta \textdom{Expr} \\
+\Sem{\textlog{State}} &\eqdef& \Delta \textdom{State} \\
+\end{array}
+\qquad\qquad
+\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
+\Sem{1} &\eqdef& \Delta \{ () \} \\
+\Sem{\type \times \type'} &\eqdef& \Sem{\type} \times \Sem{\type} \\
+\Sem{\type \to \type'} &\eqdef& \Sem{\type} \nfn \Sem{\type} \\
+\end{array}
+\]
 
-%A term $\vctx \proves \term : \sort$ is interpreted as a non-expansive map from $\Sem{\vctx}$ to $\Sem{\sort}$.
+The balance of our signature $\Sig$ is interpreted as follows.
+For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define
+\[
+\Sem{\type} \eqdef X_\type
+\]
+For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick a function $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \nfn \Sem{\type_{n+1}}$.
 
+\typedsection{Interpretation of non-propositional terms}{\Sem{\vctx \proves \term : \type} : \Sem{\vctx} \nfn \Sem{\type}}
 \begin{align*}
-	\Sem{\vctx \proves x : \sort}_\gamma &= \gamma(x) \\
-	\Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &= \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \ \WHEN \sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn \\
-	\Sem{\vctx \proves \Lam x. \term : \sort \to \sort'}_\gamma &=
-	\Lam v : \Sem{\sort}. \Sem{\vctx, x : \sort \proves \term : \sort'}_{\gamma[x \mapsto v]} \\
-	\Sem{\vctx \proves \term~\termB : \sort'}_\gamma &=
-	\Sem{\vctx \proves \term : \sort \to \sort'}_\gamma(\Sem{\vctx \proves \termB : \sort}_\gamma) \\
-	\Sem{\vctx \proves \unitval : \unitsort}_\gamma &= \star \\
-	\Sem{\vctx \proves (\term_1, \term_2) : \sort_1 \times \sort_2}_\gamma &= (\Sem{\vctx \proves \term_1 : \sort_1}_\gamma, \Sem{\vctx \proves \term_2 : \sort_2}_\gamma) \\
-	\Sem{\vctx \proves \pi_i~\term : \sort_1}_\gamma &= \pi_i(\Sem{\vctx \proves \term : \sort_1 \times \sort_2}_\gamma)
-\end{align*}
-%
-\begin{align*}
-	\Sem{\vctx \proves \mzero : \textsort{Monoid}}_\gamma &= \mzero \\
-	\Sem{\vctx \proves \munit : \textsort{Monoid}}_\gamma &= \munit \\
-	\Sem{\vctx \proves \melt \mtimes \meltB : \textsort{Monoid}}_\gamma &=
-	\Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textsort{Monoid}}_\gamma
+	\Sem{\vctx \proves x : \type}_\gamma &\eqdef \gamma(x) \\
+	\Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &\eqdef \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \\
+	\Sem{\vctx \proves \Lam \var:\type. \term : \type \to \type'}_\gamma &\eqdef
+	\Lam \termB : \Sem{\type}. \Sem{\vctx, \var : \type \proves \term : \type}_{\gamma[\var \mapsto \termB]} \\
+	\Sem{\vctx \proves \term(\termB) : \type'}_\gamma &\eqdef
+	\Sem{\vctx \proves \term : \type \to \type'}_\gamma(\Sem{\vctx \proves \termB : \type}_\gamma) \\
+	\Sem{\vctx \proves \MU \var:\type. \term : \type}_\gamma &\eqdef
+	\mathit{fix}(\Lam \termB : \Sem{\type}. \Sem{\vctx, x : \type \proves \term : \type}_{\gamma[x \mapsto \termB]}) \\
+  ~\\
+	\Sem{\vctx \proves () : 1}_\gamma &\eqdef () \\
+	\Sem{\vctx \proves (\term_1, \term_2) : \type_1 \times \type_2}_\gamma &\eqdef (\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \Sem{\vctx \proves \term_2 : \type_2}_\gamma) \\
+	\Sem{\vctx \proves \pi_i(\term) : \type_i}_\gamma &\eqdef \pi_i(\Sem{\vctx \proves \term : \type_1 \times \type_2}_\gamma) \\
+  ~\\
+	\Sem{\vctx \proves \munit : \textlog{M}}_\gamma &\eqdef \munit \\
+	\Sem{\vctx \proves \mcore\melt : \textlog{M}}_\gamma &\eqdef \mcore{\Sem{\vctx \proves \melt : \textlog{M}}_\gamma} \\
+	\Sem{\vctx \proves \melt \mtimes \meltB : \textlog{M}}_\gamma &\eqdef
+	\Sem{\vctx \proves \melt : \textlog{M}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textlog{M}}_\gamma
 \end{align*}
 %
-\begin{align*}
-	\Sem{\vctx \proves t =_\sort u : \Prop}_\gamma &=
-	\Lam W. \{\, (n, r) \mid \Sem{\vctx \proves t : \sort}_\gamma \nequiv{n+1} \Sem{\vctx \proves u : \sort}_\gamma \,\} \\
-	\Sem{\vctx \proves \FALSE : \Prop}_\gamma &= \Lam W. \emptyset \\
-	\Sem{\vctx \proves \TRUE : \Prop}_\gamma &= \Lam W. \mathbb{N} \times \textdom{Res} \\
-	\Sem{\vctx \proves P \land Q : \Prop}_\gamma &=
-	\Lam W. \Sem{\vctx \proves P : \Prop}_\gamma(W) \cap \Sem{\vctx \proves Q : \Prop}_\gamma(W) \\
-	\Sem{\vctx \proves P \lor Q : \Prop}_\gamma &=
-	\Lam W. \Sem{\vctx \proves P : \Prop}_\gamma(W) \cup \Sem{\vctx \proves Q : \Prop}_\gamma(W) \\
-	\Sem{\vctx \proves P \Ra Q : \Prop}_\gamma &=
-	\Lam W. \begin{aligned}[t]
-		\{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r' \geq r. \\
-		&\qquad
-		(n', r') \in \Sem{\vctx \proves P : \Prop}_\gamma(W')~ \\
-		&\qquad 
-		\implies (n', r') \in \Sem{\vctx \proves Q : \Prop}_\gamma(W') \,\}
-	\end{aligned} \\
-	\Sem{\vctx \proves \All x : \sort. P : \Prop}_\gamma &=
-	\Lam W. \{\, (n, r) \mid \All v \in \Sem{\sort}. (n, r) \in \Sem{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\} \\
-	\Sem{\vctx \proves \Exists x : \sort. P : \Prop}_\gamma &=
-	\Lam W. \{\, (n, r) \mid \Exists v \in \Sem{\sort}. (n, r) \in \Sem{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\}
-\end{align*}
-%
-\begin{align*}
-	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &= \always{\Sem{\vctx \proves \prop : \Prop}_\gamma} \\
-	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &= \later \Sem{\vctx \proves \prop : \Prop}_\gamma\\
-	\Sem{\vctx \proves \MU x. \pred : \sort \to \Prop}_\gamma &=
-	\mathit{fix}(\Lam v : \Sem{\sort \to \Prop}. \Sem{\vctx, x : \sort \to \Prop \proves \pred : \sort \to \Prop}_{\gamma[x \mapsto v]}) \\
-	\Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &=
-	\begin{aligned}[t]
-		\Lam W. \{\, (n, r) &\mid \Exists r_1, r_2. r = r_1 \bullet r_2 \land{} \\
-		&\qquad
-		(n, r_1) \in \Sem{\vctx \proves \prop : \Prop}_\gamma \land{} \\
-		&\qquad
-		(n, r_2) \in \Sem{\vctx \proves \propB : \Prop}_\gamma \,\}
-	\end{aligned} \\
-	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &=
-	\begin{aligned}[t]
-		\Lam W. \{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r'. \\
-		&\qquad
-		(n', r') \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W') \land r \sep r' \\
-		&\qquad
-		\implies (n', r \bullet r') \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W')
-		\}
-	\end{aligned} \\
-	\Sem{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &=
-	inv(\Sem{\vctx \proves \iname : \textsort{InvName}}_\gamma, \Sem{\vctx \proves \prop : \Prop}_\gamma) \\
-	\Sem{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &=
-	\Lam W. \{\, (n, \rs) \mid \rs.\ghostRes \geq \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \,\} \\
-	\Sem{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &=
-	\Lam W. \{\, (n, \rs) \mid \rs.\pres = \Sem{\vctx \proves \state : \textsort{State}}_\gamma \,\}
-\end{align*}
-%
-\begin{align*}
-	\Sem{\vctx \proves \pvsA{\prop}{\mask_1}{\mask_2} : \Prop}_\gamma &=
-	\textdom{vs}^{\Sem{\vctx \proves \mask_2 : \textsort{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\
-	\Sem{\vctx \proves \dynA{\expr}{\pred}{\mask} : \Prop}_\gamma &=
-	\textdom{wp}_{\Sem{\vctx \proves \mask : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textsort{Exp}}_\gamma, \Sem{\vctx \proves \pred : \textsort{Val} \to \Prop}_\gamma) \\
-	\Sem{\vctx \proves \wtt{\timeless{\prop}}{\Prop}}_\gamma &=
-	\textdom{timeless}(\Sem{\vctx \proves \prop : \Prop}_\gamma)
-\end{align*}
 
-\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2 \in \mathit{Sets}}
+An environment $\vctx$ is interpreted as the set of
+finite partial functions $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
+$\rho(x)\in\Sem{\vctx(x)}$.
+
+\paragraph{Logical entailment.}
+We can now define \emph{semantic} logical entailment.
+
+\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2}
 
 \[
 \Sem{\vctx \mid \pfctx \proves \propB} \eqdef
 \begin{aligned}[t]
 \MoveEqLeft
 \forall n \in \mathbb{N}.\;
-\forall W \in \textdom{World}.\;
 \forall \rs \in \textdom{Res}.\; 
 \forall \gamma \in \Sem{\vctx},\;
 \\&
-\bigl(\All \propB \in \pfctx. (n, \rs) \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W)\bigr)
-\implies (n, \rs) \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W)
+\bigl(\All \propB \in \pfctx. n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\rs)\bigr)
+\Ra n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\rs)
 \end{aligned}
 \]
 
+The soundness statement of the logic reads
+\[ \vctx \mid \pfctx \proves \prop \Ra \Sem{\vctx \mid \pfctx \proves \prop} \]
+
 %%% Local Variables:
 %%% mode: latex
 %%% TeX-master: "iris"
diff --git a/heap_lang/lang.v b/heap_lang/lang.v
index 3d63e057b9cf05a4e062651fcdda34db7bd06ebb..b8af355587e5e5f24b327cf5283d847f630e0a4d 100644
--- a/heap_lang/lang.v
+++ b/heap_lang/lang.v
@@ -447,7 +447,7 @@ Proof.
     end; auto with f_equal.
 Qed.
 
-Instance: Inj (=) (=) of_val.
+Instance of_val_inj : Inj (=) (=) of_val.
 Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
 
 Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
diff --git a/heap_lang/lifting.v b/heap_lang/lifting.v
index 4cbc79cdaf7afb4d20a23b9489356e8e2089e59d..c95e71f2f312e8abd14d397474c1f9522a90b8f3 100644
--- a/heap_lang/lifting.v
+++ b/heap_lang/lifting.v
@@ -25,16 +25,18 @@ Lemma wp_alloc_pst E σ e v Φ :
   ⊢ WP Alloc e @ E {{ Φ }}.
 Proof.
   (* TODO RJ: This works around ssreflect bug #22. *)
-  intros. set (φ v' σ' ef := ∃ l,
-    ef = None ∧ v' = LocV l ∧ σ' = <[l:=v]>σ ∧ σ !! l = None).
+  intros. set (φ (e' : expr []) σ' ef := ∃ l,
+    ef = None ∧ e' = Loc l ∧ σ' = <[l:=v]>σ ∧ σ !! l = None).
   rewrite -(wp_lift_atomic_step (Alloc e) φ σ) // /φ;
-    last by intros; inv_step; eauto 8.
+    last (by intros; inv_step; eauto 8); last (by simpl; eauto).
   apply sep_mono, later_mono; first done.
-  apply forall_intro=>e2; apply forall_intro=>σ2; apply forall_intro=>ef.
+  apply forall_intro=>v2; apply forall_intro=>σ2; apply forall_intro=>ef.
   apply wand_intro_l.
   rewrite always_and_sep_l -assoc -always_and_sep_l.
-  apply const_elim_l=>-[l [-> [-> [-> ?]]]].
-  by rewrite (forall_elim l) right_id const_equiv // left_id wand_elim_r.
+  apply const_elim_l=>-[l [-> [Hl [-> ?]]]].
+  rewrite (forall_elim l) right_id const_equiv // left_id wand_elim_r.
+  rewrite -(of_to_val (Loc l) (LocV l)) // in Hl. apply of_val_inj in Hl.
+  by subst.
 Qed.
 
 Lemma wp_load_pst E σ l v Φ :
@@ -42,7 +44,7 @@ Lemma wp_load_pst E σ l v Φ :
   (▷ ownP σ ★ ▷ (ownP σ -★ Φ v)) ⊢ WP Load (Loc l) @ E {{ Φ }}.
 Proof.
   intros. rewrite -(wp_lift_atomic_det_step σ v σ None) ?right_id //;
-    last by intros; inv_step; eauto using to_of_val.
+    last (by intros; inv_step; eauto using to_of_val); simpl; by eauto.
 Qed.
 
 Lemma wp_store_pst E σ l e v v' Φ :
@@ -51,7 +53,7 @@ Lemma wp_store_pst E σ l e v v' Φ :
   ⊢ WP Store (Loc l) e @ E {{ Φ }}.
 Proof.
   intros. rewrite -(wp_lift_atomic_det_step σ (LitV LitUnit) (<[l:=v]>σ) None)
-    ?right_id //; last by intros; inv_step; eauto.
+    ?right_id //; last (by intros; inv_step; eauto); simpl; by eauto.
 Qed.
 
 Lemma wp_cas_fail_pst E σ l e1 v1 e2 v2 v' Φ :
@@ -60,7 +62,8 @@ Lemma wp_cas_fail_pst E σ l e1 v1 e2 v2 v' Φ :
   ⊢ WP CAS (Loc l) e1 e2 @ E {{ Φ }}.
 Proof.
   intros. rewrite -(wp_lift_atomic_det_step σ (LitV $ LitBool false) σ None)
-    ?right_id //; last by intros; inv_step; eauto.
+    ?right_id //; last (by intros; inv_step; eauto);
+    simpl; split_and?; by eauto.
 Qed.
 
 Lemma wp_cas_suc_pst E σ l e1 v1 e2 v2 Φ :
@@ -69,7 +72,8 @@ Lemma wp_cas_suc_pst E σ l e1 v1 e2 v2 Φ :
   ⊢ WP CAS (Loc l) e1 e2 @ E {{ Φ }}.
 Proof.
   intros. rewrite -(wp_lift_atomic_det_step σ (LitV $ LitBool true)
-    (<[l:=v2]>σ) None) ?right_id //; last by intros; inv_step; eauto.
+    (<[l:=v2]>σ) None) ?right_id //; last (by intros; inv_step; eauto);
+    simpl; split_and?; by eauto.
 Qed.
 
 (** Base axioms for core primitives of the language: Stateless reductions *)
diff --git a/program_logic/hoare_lifting.v b/program_logic/hoare_lifting.v
index 7318ff8e960d159739fa33be49bfdd469ec1a64f..c9dfcfed8faba1eac5e09a44f67cfa9b97effee9 100644
--- a/program_logic/hoare_lifting.v
+++ b/program_logic/hoare_lifting.v
@@ -23,19 +23,19 @@ Lemma ht_lift_step E1 E2
   E2 ⊆ E1 → to_val e1 = None →
   reducible e1 σ1 →
   (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) →
-  ((P ={E1,E2}=> ▷ ownP σ1 ★ ▷ P') ∧ ∀ e2 σ2 ef,
-    (■ φ e2 σ2 ef ★ ownP σ2 ★ P' ={E2,E1}=> Φ1 e2 σ2 ef ★ Φ2 e2 σ2 ef) ∧
-    {{ Φ1 e2 σ2 ef }} e2 @ E1 {{ Ψ }} ∧
-    {{ Φ2 e2 σ2 ef }} ef ?@ ⊤ {{ λ _, True }})
+  ((P ={E1,E2}=> ▷ ownP σ1 ★ ▷ P') ∧
+   (∀ e2 σ2 ef, ■ φ e2 σ2 ef ★ ownP σ2 ★ P' ={E2,E1}=> Φ1 e2 σ2 ef ★ Φ2 e2 σ2 ef) ∧
+   (∀ e2 σ2 ef, {{ Φ1 e2 σ2 ef }} e2 @ E1 {{ Ψ }}) ∧
+   (∀ e2 σ2 ef, {{ Φ2 e2 σ2 ef }} ef ?@ ⊤ {{ λ _, True }}))
   ⊢ {{ P }} e1 @ E1 {{ Ψ }}.
 Proof.
   intros ?? Hsafe Hstep; apply: always_intro. apply impl_intro_l.
   rewrite (assoc _ P) {1}/vs always_elim impl_elim_r pvs_always_r.
   rewrite -(wp_lift_step E1 E2 φ _ e1 σ1) //; apply pvs_mono.
   rewrite always_and_sep_r -assoc; apply sep_mono_r.
-  rewrite (later_intro (∀ _, _)) -later_sep; apply later_mono.
+  rewrite [(_ ∧ _)%I]later_intro -later_sep; apply later_mono.
   apply forall_intro=>e2; apply forall_intro=>σ2; apply forall_intro=>ef.
-  rewrite (forall_elim e2) (forall_elim σ2) (forall_elim ef).
+  do 3 rewrite (forall_elim e2) (forall_elim σ2) (forall_elim ef).
   apply wand_intro_l; rewrite !always_and_sep_l.
   (* Apply the view shift. *)
   rewrite (assoc _ _ P') -(assoc _ _ _ P') assoc.
@@ -62,13 +62,14 @@ Proof.
     (λ e2 σ2 ef, ■ φ e2 σ2 ef ★ P)%I);
     try by (rewrite /φ'; eauto using atomic_not_val, atomic_step).
   apply and_intro; [by rewrite -vs_reflexive; apply const_intro|].
-  apply forall_mono=>e2; apply forall_mono=>σ2; apply forall_mono=>ef.
   apply and_intro; [|apply and_intro; [|done]].
-  - rewrite -vs_impl; apply: always_intro. apply impl_intro_l.
+  - apply forall_mono=>e2; apply forall_mono=>σ2; apply forall_mono=>ef.
+    rewrite -vs_impl; apply: always_intro. apply impl_intro_l.
     rewrite and_elim_l !assoc; apply sep_mono; last done.
     rewrite -!always_and_sep_l -!always_and_sep_r; apply const_elim_l=>-[??].
     by repeat apply and_intro; try apply const_intro.
-  - apply (always_intro _ _), impl_intro_l; rewrite and_elim_l.
+  - apply forall_mono=>e2; apply forall_mono=>σ2; apply forall_mono=>ef.
+    apply (always_intro _ _), impl_intro_l; rewrite and_elim_l.
     rewrite -always_and_sep_r; apply const_elim_r=>-[[v Hv] ?].
     rewrite -(of_to_val e2 v) // -wp_value'; [].
     rewrite -(exist_intro σ2) -(exist_intro ef) (of_to_val e2) //.
@@ -79,16 +80,15 @@ Lemma ht_lift_pure_step E (φ : expr Λ → option (expr Λ) → Prop) P P' Ψ e
   to_val e1 = None →
   (∀ σ1, reducible e1 σ1) →
   (∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ φ e2 ef) →
-  (∀ e2 ef,
-    {{ ■ φ e2 ef ★ P }} e2 @ E {{ Ψ }} ∧
-    {{ ■ φ e2 ef ★ P' }} ef ?@ ⊤ {{ λ _, True }})
+  ((∀ e2 ef, {{ ■ φ e2 ef ★ P }} e2 @ E {{ Ψ }}) ∧
+   (∀ e2 ef, {{ ■ φ e2 ef ★ P' }} ef ?@ ⊤ {{ λ _, True }}))
   ⊢ {{ ▷(P ★ P') }} e1 @ E {{ Ψ }}.
 Proof.
   intros ? Hsafe Hstep; apply: always_intro. apply impl_intro_l.
   rewrite -(wp_lift_pure_step E φ _ e1) //.
-  rewrite (later_intro (∀ _, _)) -later_and; apply later_mono.
+  rewrite [(_ ∧ ∀ _, _)%I]later_intro -later_and; apply later_mono.
   apply forall_intro=>e2; apply forall_intro=>ef; apply impl_intro_l.
-  rewrite (forall_elim e2) (forall_elim ef).
+  do 2 rewrite (forall_elim e2) (forall_elim ef).
   rewrite always_and_sep_l !always_and_sep_r {1}(always_sep_dup (â–  _)).
   sep_split left: [■ φ _ _; P; {{ ■ φ _ _ ★ P }} e2 @ E {{ Ψ }}]%I.
   - rewrite assoc {1}/ht -always_wand_impl always_elim wand_elim_r //.
@@ -106,11 +106,13 @@ Lemma ht_lift_pure_det_step
 Proof.
   intros ? Hsafe Hdet.
   rewrite -(ht_lift_pure_step _ (λ e2' ef', e2 = e2' ∧ ef = ef')); eauto.
-  apply forall_intro=>e2'; apply forall_intro=>ef'; apply and_mono.
-  - apply: always_intro. apply impl_intro_l.
+  apply and_mono.
+  - apply forall_intro=>e2'; apply forall_intro=>ef'.
+    apply: always_intro. apply impl_intro_l.
     rewrite -always_and_sep_l -assoc; apply const_elim_l=>-[??]; subst.
     by rewrite /ht always_elim impl_elim_r.
-  - destruct ef' as [e'|]; simpl; [|by apply const_intro].
+  - apply forall_intro=>e2'; apply forall_intro=>ef'.
+    destruct ef' as [e'|]; simpl; [|by apply const_intro].
     apply: always_intro. apply impl_intro_l.
     rewrite -always_and_sep_l -assoc; apply const_elim_l=>-[??]; subst.
     by rewrite /= /ht always_elim impl_elim_r.
diff --git a/program_logic/lifting.v b/program_logic/lifting.v
index e50e251368687daac2e76e2dafeefaed74d2be3d..edade4d96539fab7be61931e5a5ce3295c4435fb 100644
--- a/program_logic/lifting.v
+++ b/program_logic/lifting.v
@@ -61,40 +61,42 @@ Qed.
 Import uPred.
 
 Lemma wp_lift_atomic_step {E Φ} e1
-    (φ : val Λ → state Λ → option (expr Λ) → Prop) σ1 :
-  to_val e1 = None →
+    (φ : expr Λ → state Λ → option (expr Λ) → Prop) σ1 :
+  atomic e1 →
   reducible e1 σ1 →
   (∀ e2 σ2 ef,
-    prim_step e1 σ1 e2 σ2 ef → ∃ v2, to_val e2 = Some v2 ∧ φ v2 σ2 ef) →
-  (▷ ownP σ1 ★ ▷ ∀ v2 σ2 ef, ■ φ v2 σ2 ef ∧ ownP σ2 -★ Φ v2 ★ wp_fork ef)
+    prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) →
+  (▷ ownP σ1 ★ ▷ ∀ v2 σ2 ef, ■ φ (of_val v2) σ2 ef ∧ ownP σ2 -★ Φ v2 ★ wp_fork ef)
   ⊢ WP e1 @ E {{ Φ }}.
 Proof.
-  intros. rewrite -(wp_lift_step E E (λ e2 σ2 ef, ∃ v2,
-    to_val e2 = Some v2 ∧ φ v2 σ2 ef) _ e1 σ1) //; [].
+  intros. rewrite -(wp_lift_step E E (λ e2 σ2 ef,
+    is_Some (to_val e2) ∧ φ e2 σ2 ef) _ e1 σ1) //;
+    try by (eauto using atomic_not_val, atomic_step).
   rewrite -pvs_intro. apply sep_mono, later_mono; first done.
   apply forall_intro=>e2'; apply forall_intro=>σ2'.
   apply forall_intro=>ef; apply wand_intro_l.
   rewrite always_and_sep_l -assoc -always_and_sep_l.
-  apply const_elim_l=>-[v2' [Hv ?]] /=.
+  apply const_elim_l=>-[[v2 Hv] ?] /=.
   rewrite -pvs_intro.
-  rewrite (forall_elim v2') (forall_elim σ2') (forall_elim ef) const_equiv //.
-  by rewrite left_id wand_elim_r -(wp_value _ _ e2' v2').
+  rewrite (forall_elim v2) (forall_elim σ2') (forall_elim ef) const_equiv //.
+  rewrite left_id wand_elim_r -(wp_value _ _ e2' v2) //.
+  by erewrite of_to_val.
 Qed.
 
 Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 ef :
-  to_val e1 = None →
+  atomic e1 →
   reducible e1 σ1 →
   (∀ e2' σ2' ef', prim_step e1 σ1 e2' σ2' ef' →
     σ2 = σ2' ∧ to_val e2' = Some v2 ∧ ef = ef') →
   (▷ ownP σ1 ★ ▷ (ownP σ2 -★ Φ v2 ★ wp_fork ef)) ⊢ WP e1 @ E {{ Φ }}.
 Proof.
-  intros. rewrite -(wp_lift_atomic_step _ (λ v2' σ2' ef',
-    σ2 = σ2' ∧ v2 = v2' ∧ ef = ef') σ1) //; last naive_solver.
+  intros. rewrite -(wp_lift_atomic_step _ (λ e2' σ2' ef',
+    σ2 = σ2' ∧ to_val e2' = Some v2 ∧ ef = ef') σ1) //.
   apply sep_mono, later_mono; first done.
   apply forall_intro=>e2'; apply forall_intro=>σ2'; apply forall_intro=>ef'.
   apply wand_intro_l.
-  rewrite always_and_sep_l -assoc -always_and_sep_l.
-  apply const_elim_l=>-[-> [-> ->]] /=. by rewrite wand_elim_r.
+  rewrite always_and_sep_l -assoc -always_and_sep_l to_of_val.
+  apply const_elim_l=>-[-> [[->] ->]] /=. by rewrite wand_elim_r.
 Qed.
 
 Lemma wp_lift_pure_det_step {E Φ} e1 e2 ef :