diff --git a/prelude/tactics.v b/prelude/tactics.v
index 8a471ded56e799338313cb8d814cf125b727eed0..13e74464c22841fe004c0f096cc4276338d7ca91 100644
--- a/prelude/tactics.v
+++ b/prelude/tactics.v
@@ -412,10 +412,11 @@ Tactic Notation "feed" "destruct" constr(H) "as" simple_intropattern(IP) :=
 It will search for the first subterm of the goal matching [pat], and then call [tac]
 with that subterm. *)
 Ltac find_pat pat tac :=
-  match goal with |- context [?x] =>
-                  unify pat x with typeclass_instances;
-                  tryif tac x then idtac else fail 2
-end.
+  match goal with
+  |- context [?x] =>
+      unify pat x with typeclass_instances;
+      tryif tac x then idtac else fail 2
+  end.
 
 (** Coq's [firstorder] tactic fails or loops on rather small goals already. In 
 particular, on those generated by the tactic [unfold_elem_ofs] which is used
diff --git a/program_logic/namespaces.v b/program_logic/namespaces.v
index a01052b787c6439cebdbada467d55bca18d11a40..ac5d73abaf7bcffb67f40729303b25ec7c498f33 100644
--- a/program_logic/namespaces.v
+++ b/program_logic/namespaces.v
@@ -64,7 +64,7 @@ End ndisjoint.
 (* The hope is that registering these will suffice to solve most goals
 of the form [N1 ⊥ N2] and those of the form [((N1 ⊆ E ∖ N2) ∖ ..) ∖ Nn]. *)
 Hint Resolve ndisj_subseteq_difference : ndisj.
-Hint Extern 0 (_ .@ _ ⊥ _ .@ _) => apply ndot_ne_disjoint; congruence : ndisj.
+Hint Extern 0 (_ ⊥ _) => apply ndot_ne_disjoint; congruence : ndisj.
 Hint Resolve ndot_preserve_disjoint_l : ndisj.
 Hint Resolve ndot_preserve_disjoint_r : ndisj.