diff --git a/prelude/tactics.v b/prelude/tactics.v index 8a471ded56e799338313cb8d814cf125b727eed0..13e74464c22841fe004c0f096cc4276338d7ca91 100644 --- a/prelude/tactics.v +++ b/prelude/tactics.v @@ -412,10 +412,11 @@ Tactic Notation "feed" "destruct" constr(H) "as" simple_intropattern(IP) := It will search for the first subterm of the goal matching [pat], and then call [tac] with that subterm. *) Ltac find_pat pat tac := - match goal with |- context [?x] => - unify pat x with typeclass_instances; - tryif tac x then idtac else fail 2 -end. + match goal with + |- context [?x] => + unify pat x with typeclass_instances; + tryif tac x then idtac else fail 2 + end. (** Coq's [firstorder] tactic fails or loops on rather small goals already. In particular, on those generated by the tactic [unfold_elem_ofs] which is used diff --git a/program_logic/namespaces.v b/program_logic/namespaces.v index a01052b787c6439cebdbada467d55bca18d11a40..ac5d73abaf7bcffb67f40729303b25ec7c498f33 100644 --- a/program_logic/namespaces.v +++ b/program_logic/namespaces.v @@ -64,7 +64,7 @@ End ndisjoint. (* The hope is that registering these will suffice to solve most goals of the form [N1 ⊥ N2] and those of the form [((N1 ⊆ E ∖ N2) ∖ ..) ∖ Nn]. *) Hint Resolve ndisj_subseteq_difference : ndisj. -Hint Extern 0 (_ .@ _ ⊥ _ .@ _) => apply ndot_ne_disjoint; congruence : ndisj. +Hint Extern 0 (_ ⊥ _) => apply ndot_ne_disjoint; congruence : ndisj. Hint Resolve ndot_preserve_disjoint_l : ndisj. Hint Resolve ndot_preserve_disjoint_r : ndisj.