diff --git a/program_logic/auth.v b/program_logic/auth.v index 4db4ae196fb81b89fae4684a41f1fbeed81c9ce7..0424bacab0dbe525d7f6457bcaf3cadae20cc2a8 100644 --- a/program_logic/auth.v +++ b/program_logic/auth.v @@ -61,8 +61,8 @@ Section auth. (* TODO: This notion should probably be defined in algebra/, with instances proven for the important constructions. *) Definition auth_step a b := - (∀ n a' af, ✓{S n} (a ⋅ a') → a ⋅ a' ≡{S n}≡ af ⋅ a → - b ⋅ a' ≡{S n}≡ b ⋅ af ∧ ✓{S n} (b ⋅ a')). + (∀ n a' af, ✓{n} (a ⋅ a') → a ⋅ a' ≡{n}≡ af ⋅ a → + b ⋅ a' ≡{n}≡ b ⋅ af ∧ ✓{n} (b ⋅ a')). Lemma auth_closing a a' b γ : auth_step a b →