From 04f407300f560be9791b0e61a33c91fdf38a6f96 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 17 Nov 2015 15:49:51 +0100 Subject: [PATCH] Sets over A as A -> bool. --- prelude/bsets.v | 35 +++++++++++++++++++++++++++++++++++ prelude/collections.v | 2 +- 2 files changed, 36 insertions(+), 1 deletion(-) create mode 100644 prelude/bsets.v diff --git a/prelude/bsets.v b/prelude/bsets.v new file mode 100644 index 000000000..87e1c50ea --- /dev/null +++ b/prelude/bsets.v @@ -0,0 +1,35 @@ +(* Copyright (c) 2012-2015, Robbert Krebbers. *) +(* This file is distributed under the terms of the BSD license. *) +(** This file implements bsets as functions into Prop. *) +Require Export prelude.prelude. + +Record bset (A : Type) : Type := mkBSet { bset_car : A → bool }. +Arguments mkBSet {_} _. +Arguments bset_car {_} _ _. +Definition bset_all {A} : bset A := mkBSet (λ _, true). +Instance bset_empty {A} : Empty (bset A) := mkBSet (λ _, false). +Instance bset_singleton {A} `{∀ x y : A, Decision (x = y)} : + Singleton A (bset A) := λ x, mkBSet (λ y, bool_decide (y = x)). +Instance bset_elem_of {A} : ElemOf A (bset A) := λ x X, bset_car X x. +Instance bset_union {A} : Union (bset A) := λ X1 X2, + mkBSet (λ x, bset_car X1 x || bset_car X2 x). +Instance bset_intersection {A} : Intersection (bset A) := λ X1 X2, + mkBSet (λ x, bset_car X1 x && bset_car X2 x). +Instance bset_difference {A} : Difference (bset A) := λ X1 X2, + mkBSet (λ x, bset_car X1 x && negb (bset_car X2 x)). +Instance bset_collection {A} `{∀ x y : A, Decision (x = y)} : + Collection A (bset A). +Proof. + split; [split| |]. + * by intros x ?. + * by intros x y; rewrite <-(bool_decide_spec (x = y)). + * split. apply orb_prop_elim. apply orb_prop_intro. + * split. apply andb_prop_elim. apply andb_prop_intro. + * intros X Y x; unfold elem_of, bset_elem_of; simpl. + destruct (bset_car X x), (bset_car Y x); simpl; tauto. +Qed. +Instance bset_elem_of_dec {A} x (X : bset A) : Decision (x ∈ X) := _. + +Typeclasses Opaque bset_elem_of. +Global Opaque bset_empty bset_singleton bset_union + bset_intersection bset_difference. diff --git a/prelude/collections.v b/prelude/collections.v index dd1d2f9e9..a43a22e08 100644 --- a/prelude/collections.v +++ b/prelude/collections.v @@ -313,7 +313,7 @@ Section collection. End leibniz. Section dec. - Context `{∀ X Y : C, Decision (X ⊆ Y)}. + Context `{∀ (x : A) (X : C), Decision (x ∈ X)}. Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y. Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed. Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y. -- GitLab