diff --git a/algebra/upred.v b/algebra/upred.v
index 9fb690d028d7f2a74e4509e8df35daa8ad475894..29779ffb46bb5d7440e053786df42e7b9b580e16 100644
--- a/algebra/upred.v
+++ b/algebra/upred.v
@@ -784,7 +784,7 @@ Lemma always_entails_r P Q : (P ⊑ □ Q) → P ⊑ (P ★ □ Q).
 Proof. intros; rewrite -always_and_sep_r; auto. Qed.
 
 (* Own and valid *)
-Lemma own_op (a1 a2 : M) :
+Lemma ownM_op (a1 a2 : M) :
   uPred_own (a1 ⋅ a2) ≡ (uPred_own a1 ★ uPred_own a2)%I.
 Proof.
   intros x n ?; split.
@@ -794,19 +794,19 @@ Proof.
     by rewrite (associative op _ z1) -(commutative op z1) (associative op z1)
       -(associative op _ a2) (commutative op z1) -Hy1 -Hy2.
 Qed.
-Lemma always_own_unit (a : M) : (□ uPred_own (unit a))%I ≡ uPred_own (unit a).
+Lemma always_ownM_unit (a : M) : (□ uPred_own (unit a))%I ≡ uPred_own (unit a).
 Proof.
   intros x n; split; [by apply always_elim|intros [a' Hx]]; simpl.
   rewrite -(cmra_unit_idempotent a) Hx.
   apply cmra_unit_preservingN, cmra_includedN_l.
 Qed.
-Lemma always_own (a : M) : unit a ≡ a → (□ uPred_own a)%I ≡ uPred_own a.
-Proof. by intros <-; rewrite always_own_unit. Qed.
-Lemma own_something : True ⊑ ∃ a, uPred_own a.
+Lemma always_ownM (a : M) : unit a ≡ a → (□ uPred_own a)%I ≡ uPred_own a.
+Proof. by intros <-; rewrite always_ownM_unit. Qed.
+Lemma ownM_something : True ⊑ ∃ a, uPred_own a.
 Proof. intros x n ??. by exists x; simpl. Qed.
-Lemma own_empty `{Empty M, !CMRAIdentity M} : True ⊑ uPred_own ∅.
+Lemma ownM_empty `{Empty M, !CMRAIdentity M} : True ⊑ uPred_own ∅.
 Proof. intros x n ??; by  exists x; rewrite (left_id _ _). Qed.
-Lemma own_valid (a : M) : uPred_own a ⊑ ✓ a.
+Lemma ownM_valid (a : M) : uPred_own a ⊑ ✓ a.
 Proof. intros x n Hv [a' ?]; cofe_subst; eauto using cmra_validN_op_l. Qed.
 Lemma valid_intro {A : cmraT} (a : A) : ✓ a → True ⊑ ✓ a.
 Proof. by intros ? x n ? _; simpl; apply cmra_valid_validN. Qed.
@@ -819,8 +819,8 @@ Lemma always_valid {A : cmraT} (a : A) : (□ (✓ a))%I ≡ (✓ a : uPred M)%I
 Proof. done. Qed.
 
 (* Own and valid derived *)
-Lemma own_invalid (a : M) : ¬ ✓{0} a → uPred_own a ⊑ False.
-Proof. by intros; rewrite own_valid valid_elim. Qed.
+Lemma ownM_invalid (a : M) : ¬ ✓{0} a → uPred_own a ⊑ False.
+Proof. by intros; rewrite ownM_valid valid_elim. Qed.
 
 (* Big ops *)
 Global Instance uPred_big_and_proper : Proper ((≡) ==> (≡)) (@uPred_big_and M).
@@ -935,7 +935,7 @@ Proof. by intros; rewrite /AlwaysStable always_valid. Qed.
 Global Instance later_always_stable P : AS P → AS (▷ P).
 Proof. by intros; rewrite /AlwaysStable always_later; apply later_mono. Qed.
 Global Instance own_unit_always_stable (a : M) : AS (uPred_own (unit a)).
-Proof. by rewrite /AlwaysStable always_own_unit. Qed.
+Proof. by rewrite /AlwaysStable always_ownM_unit. Qed.
 Global Instance default_always_stable {A} P (Q : A → uPred M) (mx : option A) :
   AS P → (∀ x, AS (Q x)) → AS (default P mx Q).
 Proof. destruct mx; apply _. Qed.
diff --git a/program_logic/auth.v b/program_logic/auth.v
index 8f370daebbfe6858aeb82edc4f89f0ca5cb5f07a..e8705d00e383a9b3f5bfe6d3a7830f194d29662f 100644
--- a/program_logic/auth.v
+++ b/program_logic/auth.v
@@ -1,6 +1,6 @@
 Require Export algebra.auth algebra.functor.
 Require Export program_logic.invariants program_logic.ghost_ownership.
-Import uPred ghost_ownership.
+Import uPred.
 
 Section auth.
   Context {A : cmraT} `{Empty A, !CMRAIdentity A}.
diff --git a/program_logic/ownership.v b/program_logic/ownership.v
index d1f3a35d914e62922fb8f9be84b4ab57fac87940..10251bd8df05dca3f2f6ecda4beefc6f7bf2fd7b 100644
--- a/program_logic/ownership.v
+++ b/program_logic/ownership.v
@@ -27,7 +27,7 @@ Proof.
 Qed.
 Lemma always_ownI i P : (□ ownI i P)%I ≡ ownI i P.
 Proof.
-  apply uPred.always_own.
+  apply uPred.always_ownM.
   by rewrite Res_unit !cmra_unit_empty map_unit_singleton.
 Qed.
 Global Instance ownI_always_stable i P : AlwaysStable (ownI i P).
@@ -38,8 +38,8 @@ Proof. apply (uPred.always_sep_dup' _). Qed.
 (* physical state *)
 Lemma ownP_twice σ1 σ2 : (ownP σ1 ★ ownP σ2 : iProp Λ Σ) ⊑ False.
 Proof.
-  rewrite /ownP -uPred.own_op Res_op.
-  by apply uPred.own_invalid; intros (_&?&_).
+  rewrite /ownP -uPred.ownM_op Res_op.
+  by apply uPred.ownM_invalid; intros (_&?&_).
 Qed.
 Global Instance ownP_timeless σ : TimelessP (@ownP Λ Σ σ).
 Proof. rewrite /ownP; apply _. Qed.
@@ -49,14 +49,14 @@ Global Instance ownG_ne n : Proper (dist n ==> dist n) (@ownG Λ Σ).
 Proof. by intros m m' Hm; unfold ownG; rewrite Hm. Qed.
 Global Instance ownG_proper : Proper ((≡) ==> (≡)) (@ownG Λ Σ) := ne_proper _.
 Lemma ownG_op m1 m2 : ownG (m1 ⋅ m2) ≡ (ownG m1 ★ ownG m2)%I.
-Proof. by rewrite /ownG -uPred.own_op Res_op !(left_id _ _). Qed.
+Proof. by rewrite /ownG -uPred.ownM_op Res_op !(left_id _ _). Qed.
 Lemma always_ownG_unit m : (□ ownG (unit m))%I ≡ ownG (unit m).
 Proof.
-  apply uPred.always_own.
+  apply uPred.always_ownM.
   by rewrite Res_unit !cmra_unit_empty -{2}(cmra_unit_idempotent m).
 Qed.
 Lemma ownG_valid m : (ownG m) ⊑ (✓ m).
-Proof. by rewrite /ownG uPred.own_valid; apply uPred.valid_mono=> n [? []]. Qed.
+Proof. by rewrite /ownG uPred.ownM_valid; apply uPred.valid_mono=> n [? []]. Qed.
 Lemma ownG_valid_r m : (ownG m) ⊑ (ownG m ★ ✓ m).
 Proof. apply (uPred.always_entails_r' _ _), ownG_valid. Qed.
 Global Instance ownG_timeless m : Timeless m → TimelessP (ownG m).