diff --git a/iris_unsafe.v b/iris_unsafe.v index 44a55eda56232b87bb603e59a1f84e918d2eb8c8..d8a4251651e036980e37b3ddb0842127717c1fa6 100644 --- a/iris_unsafe.v +++ b/iris_unsafe.v @@ -61,11 +61,6 @@ Module Unsafety (RL : RA_T) (C : CORE_LANG). by exfalso; omega. Qed. - (* Leibniz equality arise from SSR's case tactic. - RJ: I could use this ;-) move to CSetoid? *) (* PDS: Feel free. I'd like to eventually get everything but the robust safety theorem out of this file. *) - Lemma equivP {T : Type} `{eqT : Setoid T} {a b : T} : a = b -> a == b. - Proof. by move=>->; reflexivity. Qed. - (* Simple monotonicity tactics for props and wsat. @@ -213,7 +208,7 @@ Module Unsafety (RL : RA_T) (C : CORE_LANG). exists w'' α; split; [done| split]; last first. + by move: HW; rewrite 2! mask_full_union => HW; wsatM HW. apply: (IH _ HLt _ _ _ _ HSw₀); last done. - rewrite fillE; exists r' rK; split; [exact: equivP | split; [by propsM Hei' |] ]. + rewrite fillE; exists r' rK; split; [exact: equivR | split; [by propsM Hei' |] ]. have {HSw} HSw: w ⊑ w'' by transitivity w'. by propsM HK. @@ -246,7 +241,7 @@ Module Unsafety (RL : RA_T) (C : CORE_LANG). rewrite/= in Hei'; rewrite fill_empty -Hk' in Hei' * => {Hk'}. have {HSw₀} HSw₀ : w₀ ⊑ w''' by transitivity w''; first by transitivity w'. apply: (IH _ HLt _ _ _ _ HSw₀); last done. - rewrite fillE; exists rei' rK; split; [exact: equivP | split; [done |] ]. + rewrite fillE; exists rei' rK; split; [exact: equivR | split; [done |] ]. have {HSw HSw' HSw''} HSw: w ⊑ w''' by transitivity w''; first by transitivity w'. by propsM HK. Qed. diff --git a/iris_vs.v b/iris_vs.v index 4f689abc0dd951d4c1a12e39ddef9c77c75e2c32..8f1003bf0103e956d7b183248be9cd26cd58d9ec 100644 --- a/iris_vs.v +++ b/iris_vs.v @@ -107,7 +107,7 @@ Module IrisVS (RL : RA_T) (C : CORE_LANG). do 8 red in HInv. destruct HE as [rs [HE HM] ]. destruct (rs i) as [ri |] eqn: HLr. - - rewrite ->comp_map_remove with (i := i) (r := ri) in HE by (rewrite HLr; reflexivity). + - rewrite ->comp_map_remove with (i := i) (r := ri) in HE by now eapply equivR. rewrite ->assoc, <- (assoc (_ r)), (comm rf), assoc in HE. exists w'. exists↓ (ra_proj r · ra_proj ri). { destruct HE as [HE _]. eapply ra_op_valid, ra_op_valid; eauto with typeclass_instances. } @@ -149,15 +149,15 @@ Module IrisVS (RL : RA_T) (C : CORE_LANG). { destruct (rs i) as [rsi |] eqn: EQrsi; subst; [| simpl; rewrite ->ra_op_unit by apply _; now apply ra_pos_valid]. clear - HE EQrsi. destruct HE as [HE _]. - rewrite ->comp_map_remove with (i:=i) in HE by (erewrite EQrsi; reflexivity). + rewrite ->comp_map_remove with (i:=i) in HE by (eapply equivR; eassumption). rewrite ->(assoc (_ r)), (comm (_ r)), comm, assoc, <-(assoc (_ rsi) _), (comm _ (ra_proj r)), assoc in HE. eapply ra_op_valid, ra_op_valid; now eauto with typeclass_instances. } exists (fdUpdate i rri rs); split; [| intros j Hm]. - simpl. erewrite ra_op_unit by apply _. clear - HE EQri. destruct (rs i) as [rsi |] eqn: EQrsi. - + subst rsi. erewrite <-comp_map_insert_old; [ eassumption | rewrite EQrsi; reflexivity | reflexivity ]. - + unfold rri. subst ri. simpl. erewrite <-comp_map_insert_new; [|rewrite EQrsi; reflexivity]. simpl. + + subst rsi. erewrite <-comp_map_insert_old; [ eassumption | eapply equivR; eassumption | reflexivity ]. + + unfold rri. subst ri. simpl. erewrite <-comp_map_insert_new; [|now eapply equivR]. simpl. erewrite ra_op_unit by apply _. assumption. - specialize (HD j); unfold mask_sing, mask_set, mcup in *; simpl in Hm, HD. destruct (Peano_dec.eq_nat_dec i j); @@ -321,7 +321,7 @@ Module IrisVS (RL : RA_T) (C : CORE_LANG). } split. { - rewrite <-comp_map_insert_new by (rewrite HRi; reflexivity). + rewrite <-comp_map_insert_new by now eapply equivR. rewrite ->assoc, (comm rf). assumption. } intros j Hm'. diff --git a/lib/ModuRes/CSetoid.v b/lib/ModuRes/CSetoid.v index 223a7089e4ebbe130a164b06fce19e1755a076cb..99b90253ea38646e00bb12d9454e0ea603c8833c 100644 --- a/lib/ModuRes/CSetoid.v +++ b/lib/ModuRes/CSetoid.v @@ -16,6 +16,13 @@ Generalizable Variables T U V W. Definition equiv `{Setoid T} := SetoidClass.equiv. Arguments equiv {_ _} _ _ /. +(* Proof by reflexivity *) +Lemma equivR {T : Type} `{eqT : Setoid T} {a b : T} : + a = b -> a == b. +Proof. + intros Heq. subst a. reflexivity. +Qed. + Notation "'mkType' R" := (@Build_Setoid _ R _) (at level 10). (** A morphism between two types is an actual function together with a