From iris.proofmode Require Import tactics. From iris.base_logic.lib Require Import invariants. Lemma demo_0 {M : ucmraT} (P Q : uPred M) : □ (P ∨ Q) -∗ (∀ x, ⌜x = 0⌝ ∨ ⌜x = 1⌝) → (Q ∨ P). Proof. iIntros "#H #H2". (* should remove the disjunction "H" *) iDestruct "H" as "[?|?]"; last by iLeft. (* should keep the disjunction "H" because it is instantiated *) iDestruct ("H2" \$! 10) as "[%|%]". done. done. Qed. Lemma demo_1 (M : ucmraT) (P1 P2 P3 : nat → uPred M) : (∀ (x y : nat) a b, x ≡ y → □ (uPred_ownM (a ⋅ b) -∗ (∃ y1 y2 c, P1 ((x + y1) + y2) ∧ True ∧ □ uPred_ownM c) -∗ □ ▷ (∀ z, P2 z ∨ True → P2 z) -∗ ▷ (∀ n m : nat, P1 n → □ ((True ∧ P2 n) → □ (⌜n = n⌝ ↔ P3 n))) -∗ ▷ ⌜x = 0⌝ ∨ ∃ x z, ▷ P3 (x + z) ∗ uPred_ownM b ∗ uPred_ownM (core b)))%I. Proof. iIntros (i [|j] a b ?) "!# [Ha Hb] H1 #H2 H3"; setoid_subst. { iLeft. by iNext. } iRight. iDestruct "H1" as (z1 z2 c) "(H1&_&#Hc)". iPoseProof "Hc" as "foo". iRevert (a b) "Ha Hb". iIntros (b a) "Hb {foo} Ha". iAssert (uPred_ownM (a ⋅ core a)) with "[Ha]" as "[Ha #Hac]". { by rewrite cmra_core_r. } iIntros "{\$Hac \$Ha}". iExists (S j + z1), z2. iNext. iApply ("H3" \$! _ 0 with "H1 []"). - iSplit. done. iApply "H2". iLeft. iApply "H2". by iRight. - done. Qed. Lemma demo_2 (M : ucmraT) (P1 P2 P3 P4 Q : uPred M) (P5 : nat → uPredC M): P2 ∗ (P3 ∗ Q) ∗ True ∗ P1 ∗ P2 ∗ (P4 ∗ (∃ x:nat, P5 x ∨ P3)) ∗ True -∗ P1 -∗ (True ∗ True) -∗ (((P2 ∧ False ∨ P2 ∧ ⌜0 = 0⌝) ∗ P3) ∗ Q ∗ P1 ∗ True) ∧ (P2 ∨ False) ∧ (False → P5 0). Proof. (* Intro-patterns do something :) *) iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]". (* To test destruct: can also be part of the intro-pattern *) iDestruct "foo" as "[_ meh]". repeat iSplit; [|by iLeft|iIntros "#[]"]. iFrame "H2". (* split takes a list of hypotheses just for the LHS *) iSplitL "H3". * iFrame "H3". by iRight. * iSplitL "HQ". iAssumption. by iSplitL "H1". Qed. Lemma demo_3 (M : ucmraT) (P1 P2 P3 : uPred M) : P1 ∗ P2 ∗ P3 -∗ ▷ P1 ∗ ▷ (P2 ∗ ∃ x, (P3 ∧ ⌜x = 0⌝) ∨ P3). Proof. iIntros "(\$ & \$ & H)". iFrame "H". iNext. by iExists 0. Qed. Definition foo {M} (P : uPred M) := (P → P)%I. Definition bar {M} : uPred M := (∀ P, foo P)%I. Lemma demo_4 (M : ucmraT) : True -∗ @bar M. Proof. iIntros. iIntros (P) "HP". done. Qed. Lemma demo_5 (M : ucmraT) (x y : M) (P : uPred M) : (∀ z, P → z ≡ y) -∗ (P -∗ (x,x) ≡ (y,x)). Proof. iIntros "H1 H2". iRewrite (uPred.internal_eq_sym x x with "[#]"); first done. iRewrite -("H1" \$! _ with "[-]"); first done. done. Qed. Lemma demo_6 (M : ucmraT) (P Q : uPred M) : (∀ x y z : nat, ⌜x = plus 0 x⌝ → ⌜y = 0⌝ → ⌜z = 0⌝ → P → □ Q → foo (x ≡ x))%I. Proof. iIntros (a) "*". iIntros "#Hfoo **". by iIntros "# _". Qed. Lemma demo_7 (M : ucmraT) (P Q1 Q2 : uPred M) : P ∗ (Q1 ∧ Q2) -∗ P ∗ Q1. Proof. iIntros "[H1 [H2 _]]". by iFrame. Qed. Section iris. Context `{invG Σ}. Implicit Types E : coPset. Implicit Types P Q : iProp Σ. Lemma demo_8 N E P Q R : ↑N ⊆ E → (True -∗ P -∗ inv N Q -∗ True -∗ R) -∗ P -∗ ▷ Q ={E}=∗ R. Proof. iIntros (?) "H HP HQ". iApply ("H" with "[#] HP >[HQ] >"). - done. - by iApply inv_alloc. - done. Qed. End iris. Lemma demo_9 (M : ucmraT) (x y z : M) : ✓ x → ⌜y ≡ z⌝ -∗ (✓ x ∧ ✓ x ∧ y ≡ z : uPred M). Proof. iIntros (Hv) "Hxy". by iFrame (Hv Hv) "Hxy". Qed.