From iris.program_logic Require Export language ectx_language ectxi_language. From iris.algebra Require Export ofe. From stdpp Require Export strings. From stdpp Require Import gmap. Set Default Proof Using "Type". (** heap_lang. A fairly simple language used for common Iris examples. - This is a right-to-left evaluated language, like CakeML and OCaml. The reason for this is that it makes curried functions usable: Given a WP for [f a b], we know that any effects [f] might have to not matter until after *both* [a] and [b] are evaluated. With left-to-right evaluation, that triple is basically useless the user let-expands [b]. *) Delimit Scope expr_scope with E. Delimit Scope val_scope with V. Module heap_lang. Open Scope Z_scope. (** Expressions and vals. *) Definition loc := positive. (* Really, any countable type. *) Definition proph := positive. Inductive base_lit : Set := | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitLoc (l : loc) | LitProphecy (p: proph). Inductive un_op : Set := | NegOp | MinusUnOp. Inductive bin_op : Set := | PlusOp | MinusOp | MultOp | QuotOp | RemOp (* Arithmetic *) | AndOp | OrOp | XorOp (* Bitwise *) | ShiftLOp | ShiftROp (* Shifts *) | LeOp | LtOp | EqOp. (* Relations *) Inductive binder := BAnon | BNamed : string → binder. Delimit Scope binder_scope with bind. Bind Scope binder_scope with binder. Definition cons_binder (mx : binder) (X : list string) : list string := match mx with BAnon => X | BNamed x => x :: X end. Infix ":b:" := cons_binder (at level 60, right associativity). Instance binder_eq_dec_eq : EqDecision binder. Proof. solve_decision. Defined. Instance set_unfold_cons_binder x mx X P : SetUnfold (x ∈ X) P → SetUnfold (x ∈ mx :b: X) (BNamed x = mx ∨ P). Proof. constructor. rewrite -(set_unfold (x ∈ X) P). destruct mx; rewrite /= ?elem_of_cons; naive_solver. Qed. Inductive expr := (* Base lambda calculus *) | Var (x : string) | Rec (f x : binder) (e : expr) | App (e1 e2 : expr) (* Base types and their operations *) | Lit (l : base_lit) | UnOp (op : un_op) (e : expr) | BinOp (op : bin_op) (e1 e2 : expr) | If (e0 e1 e2 : expr) (* Products *) | Pair (e1 e2 : expr) | Fst (e : expr) | Snd (e : expr) (* Sums *) | InjL (e : expr) | InjR (e : expr) | Case (e0 : expr) (e1 : expr) (e2 : expr) (* Concurrency *) | Fork (e : expr) (* Heap *) | Alloc (e : expr) | Load (e : expr) | Store (e1 : expr) (e2 : expr) | CAS (e0 : expr) (e1 : expr) (e2 : expr) | FAA (e1 : expr) (e2 : expr). Bind Scope expr_scope with expr. Fixpoint is_closed (X : list string) (e : expr) : bool := match e with | Var x => bool_decide (x ∈ X) | Rec f x e => is_closed (f :b: x :b: X) e | Lit _ => true | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e => is_closed X e | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 | FAA e1 e2 => is_closed X e1 && is_closed X e2 | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2 end. Class Closed (X : list string) (e : expr) := closed : is_closed X e. Instance closed_proof_irrel X e : ProofIrrel (Closed X e). Proof. rewrite /Closed. apply _. Qed. Instance closed_dec X e : Decision (Closed X e). Proof. rewrite /Closed. apply _. Defined. Inductive val := | RecV (f x : binder) (e : expr) `{!Closed (f :b: x :b: []) e} | LitV (l : base_lit) | PairV (v1 v2 : val) | InjLV (v : val) | InjRV (v : val). Bind Scope val_scope with val. Definition observation := Empty val. Fixpoint of_val (v : val) : expr := match v with | RecV f x e => Rec f x e | LitV l => Lit l | PairV v1 v2 => Pair (of_val v1) (of_val v2) | InjLV v => InjL (of_val v) | InjRV v => InjR (of_val v) end. Fixpoint to_val (e : expr) : option val := match e with | Rec f x e => if decide (Closed (f :b: x :b: []) e) then Some (RecV f x e) else None | Lit l => Some (LitV l) | Pair e1 e2 => v1 ← to_val e1; v2 ← to_val e2; Some (PairV v1 v2) | InjL e => InjLV <$> to_val e | InjR e => InjRV <$> to_val e | _ => None end. (** We assume the following encoding of values to 64-bit words: The least 3 significant bits of every word are a "tag", and we have 61 bits of payload, which is enough if all pointers are 8-byte-aligned (common on 64bit architectures). The tags have the following meaning: 0: Payload is the data for a LitV (LitInt _). 1: Payload is the data for a InjLV (LitV (LitInt _)). 2: Payload is the data for a InjRV (LitV (LitInt _)). 3: Payload is the data for a LitV (LitLoc _). 4: Payload is the data for a InjLV (LitV (LitLoc _)). 4: Payload is the data for a InjRV (LitV (LitLoc _)). 6: Payload is one of the following finitely many values, which 61 bits are more than enough to encode: LitV LitUnit, InjLV (LitV LitUnit), InjRV (LitV LitUnit), LitV (LitBool _), InjLV (LitV (LitBool _)), InjRV (LitV (LitBool _)). 7: Value is boxed, i.e., payload is a pointer to some read-only memory area on the heap which stores whether this is a RecV, PairV, InjLV or InjRV and the relevant data for those cases. However, the boxed representation is never used if any of the above representations could be used. Ignoring (as usual) the fact that we have to fit the infinite Z/loc into 61 bits, this means every value is machine-word-sized and can hence be atomically read and written. Also notice that the sets of boxed and unboxed values are disjoint. *) Definition val_is_unboxed (v : val) : Prop := match v with | LitV _ => True | InjLV (LitV _) => True | InjRV (LitV _) => True | _ => False end. (** The state: heaps of vals. *) Definition state := gmap loc val. (** Equality and other typeclass stuff *) Lemma to_of_val v : to_val (of_val v) = Some v. Proof. by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _). Qed. Lemma of_to_val e v : to_val e = Some v → of_val v = e. Proof. revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal. Qed. Instance of_val_inj : Inj (=) (=) of_val. Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed. Instance base_lit_eq_dec : EqDecision base_lit. Proof. solve_decision. Defined. Instance un_op_eq_dec : EqDecision un_op. Proof. solve_decision. Defined. Instance bin_op_eq_dec : EqDecision bin_op. Proof. solve_decision. Defined. Instance expr_eq_dec : EqDecision expr. Proof. solve_decision. Defined. Instance val_eq_dec : EqDecision val. Proof. refine (λ v v', cast_if (decide (of_val v = of_val v'))); abstract naive_solver. Defined. Instance base_lit_countable : Countable base_lit. Proof. refine (inj_countable' (λ l, match l with | LitInt n => (inl (inl n), None) | LitBool b => (inl (inr b), None) | LitUnit => (inr (inl ()), None) | LitLoc l => (inr (inr l), None) | LitProphecy p => (inr (inl ()), Some p) end) (λ l, match l with | (inl (inl n), None) => LitInt n | (inl (inr b), None) => LitBool b | (inr (inl ()), None) => LitUnit | (inr (inr l), None) => LitLoc l | (_, Some p) => LitProphecy p end) _); by intros []. Qed. Instance un_op_finite : Countable un_op. Proof. refine (inj_countable' (λ op, match op with NegOp => 0 | MinusUnOp => 1 end) (λ n, match n with 0 => NegOp | _ => MinusUnOp end) _); by intros []. Qed. Instance bin_op_countable : Countable bin_op. Proof. refine (inj_countable' (λ op, match op with | PlusOp => 0 | MinusOp => 1 | MultOp => 2 | QuotOp => 3 | RemOp => 4 | AndOp => 5 | OrOp => 6 | XorOp => 7 | ShiftLOp => 8 | ShiftROp => 9 | LeOp => 10 | LtOp => 11 | EqOp => 12 end) (λ n, match n with | 0 => PlusOp | 1 => MinusOp | 2 => MultOp | 3 => QuotOp | 4 => RemOp | 5 => AndOp | 6 => OrOp | 7 => XorOp | 8 => ShiftLOp | 9 => ShiftROp | 10 => LeOp | 11 => LtOp | _ => EqOp end) _); by intros []. Qed. Instance binder_countable : Countable binder. Proof. refine (inj_countable' (λ b, match b with BNamed s => Some s | BAnon => None end) (λ b, match b with Some s => BNamed s | None => BAnon end) _); by intros []. Qed. Instance expr_countable : Countable expr. Proof. set (enc := fix go e := match e with | Var x => GenLeaf (inl (inl x)) | Rec f x e => GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e] | App e1 e2 => GenNode 1 [go e1; go e2] | Lit l => GenLeaf (inr (inl l)) | UnOp op e => GenNode 2 [GenLeaf (inr (inr (inl op))); go e] | BinOp op e1 e2 => GenNode 3 [GenLeaf (inr (inr (inr op))); go e1; go e2] | If e0 e1 e2 => GenNode 4 [go e0; go e1; go e2] | Pair e1 e2 => GenNode 5 [go e1; go e2] | Fst e => GenNode 6 [go e] | Snd e => GenNode 7 [go e] | InjL e => GenNode 8 [go e] | InjR e => GenNode 9 [go e] | Case e0 e1 e2 => GenNode 10 [go e0; go e1; go e2] | Fork e => GenNode 11 [go e] | Alloc e => GenNode 12 [go e] | Load e => GenNode 13 [go e] | Store e1 e2 => GenNode 14 [go e1; go e2] | CAS e0 e1 e2 => GenNode 15 [go e0; go e1; go e2] | FAA e1 e2 => GenNode 16 [go e1; go e2] end). set (dec := fix go e := match e with | GenLeaf (inl (inl x)) => Var x | GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => Rec f x (go e) | GenNode 1 [e1; e2] => App (go e1) (go e2) | GenLeaf (inr (inl l)) => Lit l | GenNode 2 [GenLeaf (inr (inr (inl op))); e] => UnOp op (go e) | GenNode 3 [GenLeaf (inr (inr (inr op))); e1; e2] => BinOp op (go e1) (go e2) | GenNode 4 [e0; e1; e2] => If (go e0) (go e1) (go e2) | GenNode 5 [e1; e2] => Pair (go e1) (go e2) | GenNode 6 [e] => Fst (go e) | GenNode 7 [e] => Snd (go e) | GenNode 8 [e] => InjL (go e) | GenNode 9 [e] => InjR (go e) | GenNode 10 [e0; e1; e2] => Case (go e0) (go e1) (go e2) | GenNode 11 [e] => Fork (go e) | GenNode 12 [e] => Alloc (go e) | GenNode 13 [e] => Load (go e) | GenNode 14 [e1; e2] => Store (go e1) (go e2) | GenNode 15 [e0; e1; e2] => CAS (go e0) (go e1) (go e2) | GenNode 16 [e1; e2] => FAA (go e1) (go e2) | _ => Lit LitUnit (* dummy *) end). refine (inj_countable' enc dec _). intros e. induction e; f_equal/=; auto. Qed. Instance val_countable : Countable val. Proof. refine (inj_countable of_val to_val _); auto using to_of_val. Qed. Instance expr_inhabited : Inhabited expr := populate (Lit LitUnit). Instance val_inhabited : Inhabited val := populate (LitV LitUnit). Canonical Structure stateC := leibnizC state. Canonical Structure valC := leibnizC val. Canonical Structure exprC := leibnizC expr. (** Evaluation contexts *) Inductive ectx_item := | AppLCtx (v2 : val) | AppRCtx (e1 : expr) | UnOpCtx (op : un_op) | BinOpLCtx (op : bin_op) (v2 : val) | BinOpRCtx (op : bin_op) (e1 : expr) | IfCtx (e1 e2 : expr) | PairLCtx (v2 : val) | PairRCtx (e1 : expr) | FstCtx | SndCtx | InjLCtx | InjRCtx | CaseCtx (e1 : expr) (e2 : expr) | AllocCtx | LoadCtx | StoreLCtx (v2 : val) | StoreRCtx (e1 : expr) | CasLCtx (v1 : val) (v2 : val) | CasMCtx (e0 : expr) (v2 : val) | CasRCtx (e0 : expr) (e1 : expr) | FaaLCtx (v2 : val) | FaaRCtx (e1 : expr). Definition fill_item (Ki : ectx_item) (e : expr) : expr := match Ki with | AppLCtx v2 => App e (of_val v2) | AppRCtx e1 => App e1 e | UnOpCtx op => UnOp op e | BinOpLCtx op v2 => BinOp op e (of_val v2) | BinOpRCtx op e1 => BinOp op e1 e | IfCtx e1 e2 => If e e1 e2 | PairLCtx v2 => Pair e (of_val v2) | PairRCtx e1 => Pair e1 e | FstCtx => Fst e | SndCtx => Snd e | InjLCtx => InjL e | InjRCtx => InjR e | CaseCtx e1 e2 => Case e e1 e2 | AllocCtx => Alloc e | LoadCtx => Load e | StoreLCtx v2 => Store e (of_val v2) | StoreRCtx e1 => Store e1 e | CasLCtx v1 v2 => CAS e (of_val v1) (of_val v2) | CasMCtx e0 v2 => CAS e0 e (of_val v2) | CasRCtx e0 e1 => CAS e0 e1 e | FaaLCtx v2 => FAA e (of_val v2) | FaaRCtx e1 => FAA e1 e end. (** Substitution *) Fixpoint subst (x : string) (es : expr) (e : expr) : expr := match e with | Var y => if decide (x = y) then es else Var y | Rec f y e => Rec f y $ if decide (BNamed x ≠ f ∧ BNamed x ≠ y) then subst x es e else e | App e1 e2 => App (subst x es e1) (subst x es e2) | Lit l => Lit l | UnOp op e => UnOp op (subst x es e) | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2) | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2) | Pair e1 e2 => Pair (subst x es e1) (subst x es e2) | Fst e => Fst (subst x es e) | Snd e => Snd (subst x es e) | InjL e => InjL (subst x es e) | InjR e => InjR (subst x es e) | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2) | Fork e => Fork (subst x es e) | Alloc e => Alloc (subst x es e) | Load e => Load (subst x es e) | Store e1 e2 => Store (subst x es e1) (subst x es e2) | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2) | FAA e1 e2 => FAA (subst x es e1) (subst x es e2) end. Definition subst' (mx : binder) (es : expr) : expr → expr := match mx with BNamed x => subst x es | BAnon => id end. (** The stepping relation *) Definition un_op_eval (op : un_op) (v : val) : option val := match op, v with | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b) | NegOp, LitV (LitInt n) => Some $ LitV $ LitInt (Z.lnot n) | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n) | _, _ => None end. Definition bin_op_eval_int (op : bin_op) (n1 n2 : Z) : base_lit := match op with | PlusOp => LitInt (n1 + n2) | MinusOp => LitInt (n1 - n2) | MultOp => LitInt (n1 * n2) | QuotOp => LitInt (n1 `quot` n2) | RemOp => LitInt (n1 `rem` n2) | AndOp => LitInt (Z.land n1 n2) | OrOp => LitInt (Z.lor n1 n2) | XorOp => LitInt (Z.lxor n1 n2) | ShiftLOp => LitInt (n1 ≪ n2) | ShiftROp => LitInt (n1 ≫ n2) | LeOp => LitBool (bool_decide (n1 ≤ n2)) | LtOp => LitBool (bool_decide (n1 < n2)) | EqOp => LitBool (bool_decide (n1 = n2)) end. Definition bin_op_eval_bool (op : bin_op) (b1 b2 : bool) : option base_lit := match op with | PlusOp | MinusOp | MultOp | QuotOp | RemOp => None (* Arithmetic *) | AndOp => Some (LitBool (b1 && b2)) | OrOp => Some (LitBool (b1 || b2)) | XorOp => Some (LitBool (xorb b1 b2)) | ShiftLOp | ShiftROp => None (* Shifts *) | LeOp | LtOp => None (* InEquality *) | EqOp => Some (LitBool (bool_decide (b1 = b2))) end. Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val := if decide (op = EqOp) then Some $ LitV $ LitBool $ bool_decide (v1 = v2) else match v1, v2 with | LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ bin_op_eval_int op n1 n2 | LitV (LitBool b1), LitV (LitBool b2) => LitV <$> bin_op_eval_bool op b1 b2 | _, _ => None end. (** CAS just compares the word-sized representation of the two values, it cannot look into boxed data. This works out fine if at least one of the to-be-compared values is unboxed (exploiting the fact that an unboxed and a boxed value can never be equal because these are disjoint sets). *) Definition vals_cas_compare_safe (vl v1 : val) : Prop := val_is_unboxed vl ∨ val_is_unboxed v1. Arguments vals_cas_compare_safe !_ !_ /. Inductive head_step : expr → state → option observation -> expr → state → list (expr) → Prop := | BetaS f x e1 e2 v2 e' σ : to_val e2 = Some v2 → Closed (f :b: x :b: []) e1 → e' = subst' x (of_val v2) (subst' f (Rec f x e1) e1) → head_step (App (Rec f x e1) e2) σ None e' σ [] | UnOpS op e v v' σ : to_val e = Some v → un_op_eval op v = Some v' → head_step (UnOp op e) σ None (of_val v') σ [] | BinOpS op e1 e2 v1 v2 v' σ : to_val e1 = Some v1 → to_val e2 = Some v2 → bin_op_eval op v1 v2 = Some v' → head_step (BinOp op e1 e2) σ None (of_val v') σ [] | IfTrueS e1 e2 σ : head_step (If (Lit $ LitBool true) e1 e2) σ None e1 σ [] | IfFalseS e1 e2 σ : head_step (If (Lit $ LitBool false) e1 e2) σ None e2 σ [] | FstS e1 v1 e2 v2 σ : to_val e1 = Some v1 → to_val e2 = Some v2 → head_step (Fst (Pair e1 e2)) σ None e1 σ [] | SndS e1 v1 e2 v2 σ : to_val e1 = Some v1 → to_val e2 = Some v2 → head_step (Snd (Pair e1 e2)) σ None e2 σ [] | CaseLS e0 v0 e1 e2 σ : to_val e0 = Some v0 → head_step (Case (InjL e0) e1 e2) σ None (App e1 e0) σ [] | CaseRS e0 v0 e1 e2 σ : to_val e0 = Some v0 → head_step (Case (InjR e0) e1 e2) σ None (App e2 e0) σ [] | ForkS e σ: head_step (Fork e) σ None (Lit LitUnit) σ [e] | AllocS e v σ l : to_val e = Some v → σ !! l = None → head_step (Alloc e) σ None (Lit $ LitLoc l) (<[l:=v]>σ) [] | LoadS l v σ : σ !! l = Some v → head_step (Load (Lit $ LitLoc l)) σ None (of_val v) σ [] | StoreS l e v σ : to_val e = Some v → is_Some (σ !! l) → head_step (Store (Lit $ LitLoc l) e) σ None (Lit LitUnit) (<[l:=v]>σ) [] | CasFailS l e1 v1 e2 v2 vl σ : to_val e1 = Some v1 → to_val e2 = Some v2 → σ !! l = Some vl → vl ≠ v1 → vals_cas_compare_safe vl v1 → head_step (CAS (Lit $ LitLoc l) e1 e2) σ None (Lit $ LitBool false) σ [] | CasSucS l e1 v1 e2 v2 σ : to_val e1 = Some v1 → to_val e2 = Some v2 → σ !! l = Some v1 → vals_cas_compare_safe v1 v1 → head_step (CAS (Lit $ LitLoc l) e1 e2) σ None (Lit $ LitBool true) (<[l:=v2]>σ) [] | FaaS l i1 e2 i2 σ : to_val e2 = Some (LitV (LitInt i2)) → σ !! l = Some (LitV (LitInt i1)) → head_step (FAA (Lit $ LitLoc l) e2) σ None (Lit $ LitInt i1) (<[l:=LitV (LitInt (i1 + i2))]>σ) []. (** Basic properties about the language *) Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki). Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed. Lemma fill_item_val Ki e : is_Some (to_val (fill_item Ki e)) → is_Some (to_val e). Proof. intros [v ?]. destruct Ki; simplify_option_eq; eauto. Qed. Lemma val_head_stuck e1 σ1 κ e2 σ2 efs : head_step e1 σ1 κ e2 σ2 efs → to_val e1 = None. Proof. destruct 1; naive_solver. Qed. Lemma head_ctx_step_val Ki e σ1 κ e2 σ2 efs : head_step (fill_item Ki e) σ1 κ e2 σ2 efs → is_Some (to_val e). Proof. destruct Ki; inversion_clear 1; simplify_option_eq; by eauto. Qed. Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 : to_val e1 = None → to_val e2 = None → fill_item Ki1 e1 = fill_item Ki2 e2 → Ki1 = Ki2. Proof. destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=; repeat match goal with | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H end; auto. Qed. Lemma alloc_fresh e v σ : let l := fresh (dom (gset loc) σ) in to_val e = Some v → head_step (Alloc e) σ None (Lit (LitLoc l)) (<[l:=v]>σ) []. Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset loc)), is_fresh. Qed. (* Misc *) Lemma to_val_rec f x e `{!Closed (f :b: x :b: []) e} : to_val (Rec f x e) = Some (RecV f x e). Proof. rewrite /to_val. case_decide=> //. do 2 f_equal; apply proof_irrel. Qed. (** Closed expressions *) Lemma is_closed_weaken X Y e : is_closed X e → X ⊆ Y → is_closed Y e. Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed. Lemma is_closed_weaken_nil X e : is_closed [] e → is_closed X e. Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed. Lemma is_closed_of_val X v : is_closed X (of_val v). Proof. apply is_closed_weaken_nil. induction v; simpl; auto. Qed. Lemma is_closed_to_val X e v : to_val e = Some v → is_closed X e. Proof. intros <-%of_to_val. apply is_closed_of_val. Qed. Lemma is_closed_subst X e x es : is_closed [] es → is_closed (x :: X) e → is_closed X (subst x es e). Proof. intros ?. revert X. induction e=> X /= ?; destruct_and?; split_and?; simplify_option_eq; try match goal with | H : ¬(_ ∧ _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable] end; eauto using is_closed_weaken with set_solver. Qed. Lemma is_closed_do_subst' X e x es : is_closed [] es → is_closed (x :b: X) e → is_closed X (subst' x es e). Proof. destruct x; eauto using is_closed_subst. Qed. (* Substitution *) Lemma subst_is_closed X e x es : is_closed X e → x ∉ X → subst x es e = e. Proof. revert X. induction e=> X /=; rewrite ?bool_decide_spec ?andb_True=> ??; repeat case_decide; simplify_eq/=; f_equal; intuition eauto with set_solver. Qed. Lemma subst_is_closed_nil e x es : is_closed [] e → subst x es e = e. Proof. intros. apply subst_is_closed with []; set_solver. Qed. Lemma subst_subst e x es es' : Closed [] es' → subst x es (subst x es' e) = subst x es' e. Proof. intros. induction e; simpl; try (f_equal; by auto); simplify_option_eq; auto using subst_is_closed_nil with f_equal. Qed. Lemma subst_subst' e x es es' : Closed [] es' → subst' x es (subst' x es' e) = subst' x es' e. Proof. destruct x; simpl; auto using subst_subst. Qed. Lemma subst_subst_ne e x y es es' : Closed [] es → Closed [] es' → x ≠ y → subst x es (subst y es' e) = subst y es' (subst x es e). Proof. intros. induction e; simpl; try (f_equal; by auto); simplify_option_eq; auto using eq_sym, subst_is_closed_nil with f_equal. Qed. Lemma subst_subst_ne' e x y es es' : Closed [] es → Closed [] es' → x ≠ y → subst' x es (subst' y es' e) = subst' y es' (subst' x es e). Proof. destruct x, y; simpl; auto using subst_subst_ne with congruence. Qed. Lemma subst_rec' f y e x es : x = f ∨ x = y ∨ x = BAnon → subst' x es (Rec f y e) = Rec f y e. Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed. Lemma subst_rec_ne' f y e x es : (x ≠ f ∨ f = BAnon) → (x ≠ y ∨ y = BAnon) → subst' x es (Rec f y e) = Rec f y (subst' x es e). Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed. Lemma heap_lang_mixin : EctxiLanguageMixin of_val to_val fill_item head_step. Proof. split; apply _ || eauto using to_of_val, of_to_val, val_head_stuck, fill_item_val, fill_item_no_val_inj, head_ctx_step_val. Qed. End heap_lang. (** Language *) Canonical Structure heap_ectxi_lang := EctxiLanguage heap_lang.heap_lang_mixin. Canonical Structure heap_ectx_lang := EctxLanguageOfEctxi heap_ectxi_lang. Canonical Structure heap_lang := LanguageOfEctx heap_ectx_lang. (* Prefer heap_lang names over ectx_language names. *) Export heap_lang. (** Define some derived forms. *) Notation Lam x e := (Rec BAnon x e) (only parsing). Notation Let x e1 e2 := (App (Lam x e2) e1) (only parsing). Notation Seq e1 e2 := (Let BAnon e1 e2) (only parsing). Notation LamV x e := (RecV BAnon x e) (only parsing). Notation LetCtx x e2 := (AppRCtx (LamV x e2)) (only parsing). Notation SeqCtx e2 := (LetCtx BAnon e2) (only parsing). Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)) (only parsing). Notation Skip := (Seq (Lit LitUnit) (Lit LitUnit)).