 06 Aug, 2016 1 commit


Robbert Krebbers authored

 05 Aug, 2016 2 commits


Robbert Krebbers authored
Also make those for introduction and elimination more symmetric: !% pure introduction % pure elimination !# always introduction # always elimination !> later introduction > pat timeless later elimination !==> view shift introduction ==> pat view shift elimination

Robbert Krebbers authored
This commit features:  A simpler model. The recursive domain equation no longer involves a triple containing invariants, physical state and ghost state, but just ghost state. Invariants and physical state are encoded using (higherorder) ghost state.  (Primitive) view shifts are formalized in the logic and all properties about it are proven in the logic instead of the model. Instead, the core logic features only a notion of raw view shifts which internalizing performing frame preserving updates.  A better behaved notion of mask changing view shifts. In particular, we no longer have sideconditions on transitivity of view shifts, and we have a rule for introduction of mask changing view shifts ={E1,E2}=> P with E2 ⊆ E1 which allows to postpone performing a view shift.  The weakest precondition connective is formalized in the logic using Banach's fixpoint. All properties about the connective are proven in the logic instead of directly in the model.  Adequacy is proven in the logic and uses a primitive form of adequacy for uPred that only involves raw views shifts and laters. Some remarks:  I have removed binary view shifts. I did not see a way to describe all rules of the new mask changing view shifts using those.  There is no longer the need for the notion of "frame shifting assertions" and these are thus removed. The rules for Hoare triples are thus also stated in terms of primitive view shifts. TODO:  Maybe rename primitive view shift into something more sensible  Figure out a way to deal with closed proofs (see the commented out stuff in tests/heap_lang and tests/barrier_client).

 13 Jul, 2016 1 commit


Robbert Krebbers authored
The intropattern {H} also meant clear (both in ssreflect, and the logic part of the introduction pattern).

 31 May, 2016 1 commit


Robbert Krebbers authored
be the same as
↔ . This is a fairly intrusive change, but at least makes notations more consistent, and often shorter because fewer parentheses are needed. Note that viewshifts already had the same precedence as →.

 24 May, 2016 1 commit


Robbert Krebbers authored
Changes:  We no longer have a different syntax for specializing a term H : P ★ Q whose range P or domain Q is persistent. There is just one syntax, and the system automatically determines whether either P or Q is persistent.  While specializing a term, always modalities are automatically stripped. This gets rid of the specialization pattern !.  Make the syntax of specialization patterns more consistent. The syntax for generating a goal is [goal_spec] where goal_spec is one of the following: H1 .. Hn : generate a goal using hypotheses H1 .. Hn H1 .. Hn : generate a goal using all hypotheses but H1 .. Hn # : generate a goal for the premise in which all hypotheses can be used. This is only allowed when specializing H : P ★ Q where either P or Q is persistent. % : generate a goal for a pure premise.

 07 May, 2016 1 commit


Robbert Krebbers authored

 02 May, 2016 1 commit


Robbert Krebbers authored
iSpecialize and iDestruct. These tactics now all take an iTrm, which is a tuple consisting of a.) a lemma or name of a hypotheses b.) arguments to instantiate c.) a specialization pattern.

 19 Apr, 2016 9 commits


Robbert Krebbers authored

Robbert Krebbers authored

Ralf Jung authored

Robbert Krebbers authored

Robbert Krebbers authored

Ralf Jung authored

Ralf Jung authored

Robbert Krebbers authored
That way, we do not have useless type annotations of the form "v : language.val heap_lang" cluttering about any goal. Note, that we could decide to eta expand everywhere (as we do for ∀ and ∃), and use the notation "WP e {{ Q }}" for "wp e ⊤ (λ _, Q)".

Ralf Jung authored

 11 Apr, 2016 1 commit


Robbert Krebbers authored

 11 Mar, 2016 1 commit


Ralf Jung authored

 10 Mar, 2016 3 commits


Ralf Jung authored

Ralf Jung authored

Robbert Krebbers authored
Thanks to Amin Timany for the suggestion.

 07 Mar, 2016 2 commits


Ralf Jung authored

Ralf Jung authored
Add both nonexpansive and contractive functors, and bundle them for the general Iris instance as well as the global functor construction This allows us to move the \later in the userdefined functor to any place we want. In particular, we can now have "\later (iProp > iProp)" in the ghost CMRA.

 04 Mar, 2016 1 commit


Ralf Jung authored

 02 Mar, 2016 1 commit


Robbert Krebbers authored
This cleans up some adhoc stuff and prepares for a generalization of saved propositions.

 25 Feb, 2016 2 commits


Robbert Krebbers authored

Ralf Jung authored

 19 Feb, 2016 2 commits


Robbert Krebbers authored

Robbert Krebbers authored
* Put level of the triple at 20, so we can write things like ▷ {{ P }} e @ E {{ Φ }} without parentheses. * Use high levels for P, e and Φ. * Allow @ E to be omitted in case E = ⊤.

 18 Feb, 2016 3 commits


Ralf Jung authored

Robbert Krebbers authored
This avoids ambiguity with P and Q that we were using before for both uPreds/iProps and indexed uPreds/iProps.

Ralf Jung authored

 13 Feb, 2016 1 commit


Robbert Krebbers authored
Also, make our redefinition of done more robust under different orders of Importing modules.

 12 Feb, 2016 2 commits
 11 Feb, 2016 1 commit


Robbert Krebbers authored
Also do some minor clean up.

 10 Feb, 2016 2 commits


Ralf Jung authored

Robbert Krebbers authored
It is now slightly below implication. In order to do this, I had to change the notation from P ={E1,E2}=> Q to P >{E1,E2}=> Q because the prefer ={n is already used at level 70 for the distance of the metric.

 09 Feb, 2016 1 commit


Robbert Krebbers authored
