 08 Nov, 2017 1 commit


David Swasey authored

 04 Nov, 2017 1 commit


Robbert Krebbers authored

 25 Oct, 2017 1 commit


Robbert Krebbers authored

 27 Jan, 2017 1 commit


Ralf Jung authored

 05 Jan, 2017 1 commit


Ralf Jung authored

 03 Jan, 2017 1 commit


Ralf Jung authored
This patch was created using find name *.v  xargs L 1 awk i inplace '{from = 0} /^From/{ from = 1; ever_from = 1} { if (from == 0 && seen == 0 && ever_from == 1) { print "Set Default Proof Using \"Type*\"."; seen = 1 } }1 ' and some minor manual editing

 09 Dec, 2016 1 commit


Ralf Jung authored

 24 Nov, 2016 1 commit


JacquesHenri Jourdan authored
The idea on magic wand is to use it for curried lemmas and use ⊢ for uncurried lemmas.

 22 Nov, 2016 1 commit


Ralf Jung authored

 09 Nov, 2016 1 commit


Robbert Krebbers authored

 03 Nov, 2016 1 commit


Robbert Krebbers authored
The old choice for ★ was a arbitrary: the precedence of the ASCII asterisk * was fixed at a wrong level in Coq, so we had to pick another symbol. The ★ was a random choice from a unicode chart. The new symbol ∗ (as proposed by David Swasey) corresponds better to conventional practise and matches the symbol we use on paper.

 28 Oct, 2016 1 commit


Robbert Krebbers authored

 25 Oct, 2016 2 commits


Robbert Krebbers authored
There are now two proof mode tactics for dealing with modalities:  `iModIntro` : introduction of a modality  `iMod pm_trm as (x1 ... xn) "ipat"` : eliminate a modality The behavior of these tactics can be controlled by instances of the `IntroModal` and `ElimModal` type class. We have declared instances for later, except 0, basic updates and fancy updates. The tactic `iMod` is flexible enough that it can also eliminate an updates around a weakest pre, and so forth. The corresponding introduction patterns of these tactics are `!>` and `>`. These tactics replace the tactics `iUpdIntro`, `iUpd` and `iTimeless`. Source of backwards incompatability: the introduction pattern `!>` is used for introduction of arbitrary modalities. It used to introduce laters by stripping of a later of each hypotheses.

Robbert Krebbers authored
And also rename the corresponding proof mode tactics.

 18 Oct, 2016 1 commit


Robbert Krebbers authored

 05 Oct, 2016 1 commit


Robbert Krebbers authored

 25 Aug, 2016 1 commit


Robbert Krebbers authored

 06 Aug, 2016 1 commit


Robbert Krebbers authored

 05 Aug, 2016 2 commits


Robbert Krebbers authored
Also make those for introduction and elimination more symmetric: !% pure introduction % pure elimination !# always introduction # always elimination !> later introduction > pat timeless later elimination !==> view shift introduction ==> pat view shift elimination

Robbert Krebbers authored
This commit features:  A simpler model. The recursive domain equation no longer involves a triple containing invariants, physical state and ghost state, but just ghost state. Invariants and physical state are encoded using (higherorder) ghost state.  (Primitive) view shifts are formalized in the logic and all properties about it are proven in the logic instead of the model. Instead, the core logic features only a notion of raw view shifts which internalizing performing frame preserving updates.  A better behaved notion of mask changing view shifts. In particular, we no longer have sideconditions on transitivity of view shifts, and we have a rule for introduction of mask changing view shifts ={E1,E2}=> P with E2 ⊆ E1 which allows to postpone performing a view shift.  The weakest precondition connective is formalized in the logic using Banach's fixpoint. All properties about the connective are proven in the logic instead of directly in the model.  Adequacy is proven in the logic and uses a primitive form of adequacy for uPred that only involves raw views shifts and laters. Some remarks:  I have removed binary view shifts. I did not see a way to describe all rules of the new mask changing view shifts using those.  There is no longer the need for the notion of "frame shifting assertions" and these are thus removed. The rules for Hoare triples are thus also stated in terms of primitive view shifts. TODO:  Maybe rename primitive view shift into something more sensible  Figure out a way to deal with closed proofs (see the commented out stuff in tests/heap_lang and tests/barrier_client).

 13 Jul, 2016 1 commit


Robbert Krebbers authored
The intropattern {H} also meant clear (both in ssreflect, and the logic part of the introduction pattern).

 31 May, 2016 1 commit


Robbert Krebbers authored
be the same as
↔ . This is a fairly intrusive change, but at least makes notations more consistent, and often shorter because fewer parentheses are needed. Note that viewshifts already had the same precedence as →.

 24 May, 2016 1 commit


Robbert Krebbers authored
Changes:  We no longer have a different syntax for specializing a term H : P ★ Q whose range P or domain Q is persistent. There is just one syntax, and the system automatically determines whether either P or Q is persistent.  While specializing a term, always modalities are automatically stripped. This gets rid of the specialization pattern !.  Make the syntax of specialization patterns more consistent. The syntax for generating a goal is [goal_spec] where goal_spec is one of the following: H1 .. Hn : generate a goal using hypotheses H1 .. Hn H1 .. Hn : generate a goal using all hypotheses but H1 .. Hn # : generate a goal for the premise in which all hypotheses can be used. This is only allowed when specializing H : P ★ Q where either P or Q is persistent. % : generate a goal for a pure premise.

 07 May, 2016 1 commit


Robbert Krebbers authored

 02 May, 2016 1 commit


Robbert Krebbers authored
iSpecialize and iDestruct. These tactics now all take an iTrm, which is a tuple consisting of a.) a lemma or name of a hypotheses b.) arguments to instantiate c.) a specialization pattern.

 19 Apr, 2016 9 commits


Robbert Krebbers authored

Robbert Krebbers authored

Ralf Jung authored

Robbert Krebbers authored

Robbert Krebbers authored

Ralf Jung authored

Ralf Jung authored

Robbert Krebbers authored
That way, we do not have useless type annotations of the form "v : language.val heap_lang" cluttering about any goal. Note, that we could decide to eta expand everywhere (as we do for ∀ and ∃), and use the notation "WP e {{ Q }}" for "wp e ⊤ (λ _, Q)".

Ralf Jung authored

 11 Apr, 2016 1 commit


Robbert Krebbers authored

 11 Mar, 2016 1 commit


Ralf Jung authored

 10 Mar, 2016 3 commits


Ralf Jung authored

Ralf Jung authored

Robbert Krebbers authored
Thanks to Amin Timany for the suggestion.

 07 Mar, 2016 1 commit


Ralf Jung authored
