Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
iris
Commits
fe99f874
Commit
fe99f874
authored
Jul 25, 2016
by
Robbert Krebbers
Browse files
Move tac_exist from classes to coq_tactics where it belongs.
parent
97e8a9de
Changes
2
Hide whitespace changes
Inline
Side-by-side
proofmode/classes.v
View file @
fe99f874
...
...
@@ -301,10 +301,6 @@ Global Arguments from_exist {_} _ _ {_}.
Global
Instance
from_exist_exist
{
A
}
(
Φ
:
A
→
uPred
M
)
:
FromExist
(
∃
a
,
Φ
a
)
Φ
.
Proof
.
done
.
Qed
.
Lemma
tac_exist
{
A
}
Δ
P
(
Φ
:
A
→
uPred
M
)
:
FromExist
P
Φ
→
(
∃
a
,
Δ
⊢
Φ
a
)
→
Δ
⊢
P
.
Proof
.
intros
?
[
a
?].
rewrite
-(
from_exist
P
).
eauto
using
exist_intro'
.
Qed
.
Class
IntoExist
{
A
}
(
P
:
uPred
M
)
(
Φ
:
A
→
uPred
M
)
:
=
into_exist
:
P
⊢
∃
x
,
Φ
x
.
Global
Arguments
into_exist
{
_
}
_
_
{
_
}.
...
...
proofmode/coq_tactics.v
View file @
fe99f874
...
...
@@ -719,6 +719,10 @@ Lemma tac_forall_revert {A} Δ (Φ : A → uPred M) :
Proof
.
intros
H
Δ
a
.
by
rewrite
H
Δ
(
forall_elim
a
).
Qed
.
(** * Existential *)
Lemma
tac_exist
{
A
}
Δ
P
(
Φ
:
A
→
uPred
M
)
:
FromExist
P
Φ
→
(
∃
a
,
Δ
⊢
Φ
a
)
→
Δ
⊢
P
.
Proof
.
intros
?
[
a
?].
rewrite
-(
from_exist
P
).
eauto
using
exist_intro'
.
Qed
.
Lemma
tac_exist_destruct
{
A
}
Δ
i
p
j
P
(
Φ
:
A
→
uPred
M
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
IntoExist
P
Φ
→
(
∀
a
,
∃
Δ
'
,
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment