Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Tej Chajed
iris
Commits
f9bc9466
Commit
f9bc9466
authored
Jan 25, 2017
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
generalize fixpoint from f^2 contractive to f^k contractive
parent
f351a117
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
21 deletions
+23
-21
theories/algebra/ofe.v
theories/algebra/ofe.v
+23
-21
No files found.
theories/algebra/ofe.v
View file @
f9bc9466
...
...
@@ -261,44 +261,46 @@ Section fixpoint.
Qed
.
End
fixpoint
.
(** Fixpoint of f when f^2 is contractive. **)
(* TODO: Generalize 2 to m. *)
Definition
fixpoint2
`
{
Cofe
A
,
Inhabited
A
}
(
f
:
A
→
A
)
`
{!
Contractive
(
Nat
.
iter
2
f
)}
:
=
fixpoint
(
Nat
.
iter
2
f
).
(** Fixpoint of f when f^k is contractive. **)
Definition
fixpointK
`
{
Cofe
A
,
Inhabited
A
}
k
(
f
:
A
→
A
)
`
{!
Contractive
(
Nat
.
iter
k
f
)}
:
=
fixpoint
(
Nat
.
iter
k
f
).
Section
fixpoint
2
.
Section
fixpoint
K
.
Local
Set
Default
Proof
Using
"Type*"
.
Context
`
{
Cofe
A
,
Inhabited
A
}
(
f
:
A
→
A
)
`
{!
Contractive
(
Nat
.
iter
2
f
)}.
Context
`
{
Cofe
A
,
Inhabited
A
}
(
f
:
A
→
A
)
k
`
{!
Contractive
(
Nat
.
iter
k
f
)}.
(* TODO: Can we get rid of this assumption, derive it from contractivity? *)
Context
`
{!
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
}.
Lemma
fixpoint
2
_unfold
:
fixpoint
2
f
≡
f
(
fixpoint
2
f
).
Lemma
fixpoint
K
_unfold
:
fixpoint
K
k
f
≡
f
(
fixpoint
K
k
f
).
Proof
.
apply
equiv_dist
=>
n
.
rewrite
/
fixpoint
2
fixpoint_eq
/
fixpoint_def
(
conv_compl
n
(
fixpoint_chain
_
))
//.
rewrite
/
fixpoint
K
fixpoint_eq
/
fixpoint_def
(
conv_compl
n
(
fixpoint_chain
_
))
//.
induction
n
as
[|
n
IH
]
;
simpl
.
-
eapply
contractive_0
with
(
f0
:
=
Nat
.
iter
2
f
).
done
.
-
eapply
contractive_S
with
(
f0
:
=
Nat
.
iter
2
f
)
;
first
done
.
eauto
.
-
rewrite
-
Nat_iter_S
Nat_iter_S_r
.
eapply
contractive_0
;
first
done
.
-
rewrite
-[
f
_
]
Nat_iter_S
Nat_iter_S_r
.
eapply
contractive_S
;
first
done
.
eauto
.
Qed
.
Lemma
fixpoint
2
_unique
(
x
:
A
)
:
x
≡
f
x
→
x
≡
fixpoint
2
f
.
Lemma
fixpoint
K
_unique
(
x
:
A
)
:
x
≡
f
x
→
x
≡
fixpoint
K
k
f
.
Proof
.
intros
Hf
.
apply
fixpoint_unique
,
equiv_dist
=>
n
.
eapply
equiv_dist
in
Hf
.
rewrite
2
!{
1
}
Hf
.
done
.
intros
Hf
.
apply
fixpoint_unique
,
equiv_dist
=>
n
.
(* Forward reasoning is so annoying... *)
assert
(
x
≡
{
n
}
≡
f
x
)
by
by
apply
equiv_dist
.
clear
Contractive0
.
induction
k
;
first
done
.
by
rewrite
{
1
}
Hf
{
1
}
IHn0
.
Qed
.
Section
fixpoint
2
_ne
.
Context
(
g
:
A
→
A
)
`
{!
Contractive
(
Nat
.
iter
2
g
),
!
∀
n
,
Proper
(
dist
n
==>
dist
n
)
g
}.
Section
fixpoint
K
_ne
.
Context
(
g
:
A
→
A
)
`
{!
Contractive
(
Nat
.
iter
k
g
),
!
∀
n
,
Proper
(
dist
n
==>
dist
n
)
g
}.
Lemma
fixpoint
2
_ne
n
:
(
∀
z
,
f
z
≡
{
n
}
≡
g
z
)
→
fixpoint
2
f
≡
{
n
}
≡
fixpoint
2
g
.
Lemma
fixpoint
K
_ne
n
:
(
∀
z
,
f
z
≡
{
n
}
≡
g
z
)
→
fixpoint
K
k
f
≡
{
n
}
≡
fixpoint
K
k
g
.
Proof
.
rewrite
/
fixpoint2
=>
Hne
/=.
apply
fixpoint_ne
=>?
/=.
rewrite
!
Hne
.
done
.
rewrite
/
fixpointK
=>
Hne
/=.
apply
fixpoint_ne
=>?
/=.
clear
Contractive0
Contractive1
.
induction
k
;
first
by
auto
.
simpl
.
rewrite
IHn0
.
apply
Hne
.
Qed
.
Lemma
fixpoint
2
_proper
:
(
∀
z
,
f
z
≡
g
z
)
→
fixpoint
2
f
≡
fixpoint
2
g
.
Proof
.
setoid_rewrite
equiv_dist
;
naive_solver
eauto
using
fixpoint
2
_ne
.
Qed
.
End
fixpoint
2
_ne
.
End
fixpoint
2
.
Lemma
fixpoint
K
_proper
:
(
∀
z
,
f
z
≡
g
z
)
→
fixpoint
K
k
f
≡
fixpoint
K
k
g
.
Proof
.
setoid_rewrite
equiv_dist
;
naive_solver
eauto
using
fixpoint
K
_ne
.
Qed
.
End
fixpoint
K
_ne
.
End
fixpoint
K
.
(** Mutual fixpoints *)
Section
fixpointAB
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment