Commit eed2dc1d by Ralf Jung

### hide which exact functors the barrier needs

parent 1c4b9888
 ... ... @@ -126,6 +126,9 @@ End barrier_proto. the module into our namespaces. But Coq doesn't seem to support that...?? *) Import barrier_proto. (* The functors we need. *) Definition barrierFs := stsF sts `::` agreeF `::` pnil. (** Now we come to the Iris part of the proof. *) Section proof. Context {Σ : iFunctorG} (N : namespace). ... ...
 ... ... @@ -28,8 +28,7 @@ Section client. End client. Section ClosedProofs. Definition Σ : iFunctorG := agreeF .:: constF (stsRA barrier_proto.sts) .:: heapF .:: (λ _, constF unitRA) : iFunctorG. Definition Σ : iFunctorG := heapF .:: barrierFs .++ endF. Notation iProp := (iPropG heap_lang Σ). Lemma client_safe_closed σ : {{ ownP σ : iProp }} client {{ λ v, True }}. ... ...
 ... ... @@ -31,20 +31,41 @@ Section functions. End functions. (** "Cons-ing" of functions from nat to T *) (* Coq's standard lists are not universe polymorphic. Hence we have to re-define them. Ouch. TODO: If we decide to end up going with this, we should move this elsewhere. *) Polymorphic Inductive plist {A : Type} : Type := | pnil : plist | pcons: A → plist → plist. Arguments plist : clear implicits. Polymorphic Fixpoint papp {A : Type} (l1 l2 : plist A) : plist A := match l1 with | pnil => l2 | pcons a l => pcons a (papp l l2) end. (* TODO: Notation is totally up for debate. *) Infix "`::`" := pcons (at level 60, right associativity) : C_scope. Infix "`++`" := papp (at level 60, right associativity) : C_scope. Polymorphic Definition fn_cons {T : Type} (t : T) (f: nat → T) : nat → T := λ n, match n with | O => t | S n => f n end. Polymorphic Definition fn_mcons {T : Type} (ts : list T) (f : nat → T) : nat → T := fold_right fn_cons f ts. Polymorphic Fixpoint fn_mcons {T : Type} (ts : plist T) (f : nat → T) : nat → T := match ts with | pnil => f | pcons t ts => fn_cons t (fn_mcons ts f) end. (* TODO: Notation is totally up for debate. *) Infix ".::" := fn_cons (at level 60, right associativity) : C_scope. Infix ".++" := fn_mcons (at level 60, right associativity) : C_scope. Polymorphic Lemma fn_mcons_app {T : Type} (ts1 ts2 : list T) f : (ts1 ++ ts2) .++ f = ts1 .++ (ts2 .++ f). Polymorphic Lemma fn_mcons_app {T : Type} (ts1 ts2 : plist T) f : (ts1 `++` ts2) .++ f = ts1 .++ (ts2 .++ f). Proof. unfold fn_mcons. rewrite fold_right_app. done. induction ts1; simpl; eauto. congruence. Qed.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!