Commit ecd304f2 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Internal definition of contractive and use it to prove internal_eq_rewrite.

This removes Ralf's hack of using later_car, which is not function in the logic.

Thanks to Aleš for suggesting this.
parent ab25b956
......@@ -770,13 +770,6 @@ Section later.
Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed.
Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
Proof. by intros x y. Qed.
Lemma later_car_compose_ne {B : ofeT} (f : A B) :
(Contractive f) n, Proper (dist n ==> dist n) (f later_car).
move=> Hcont n [x] [y] /= Hxy. apply Hcont. intros m Hmn.
destruct n; first by (exfalso; omega). eapply dist_le', Hxy. omega.
End later.
Arguments laterC : clear implicits.
......@@ -290,10 +290,8 @@ Proof. apply (internal_eq_rewrite a b (λ b, b ≡ a)%I); auto. solve_proper. Qe
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A uPred M) P
{HΨ : Contractive Ψ} : (P (a b)) (P Ψ a) P Ψ b.
rewrite -later_equivI. intros Heq.
change ((P (Ψ later_car) (Next a)) P (Ψ later_car) (Next b)).
apply internal_eq_rewrite; last done.
exact: later_car_compose_ne.
move: HΨ=> /contractiveI HΨ Heq ?.
apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -HΨ.
Lemma pure_impl_forall φ P : (⌜φ⌝ P) ( _ : φ, P).
......@@ -581,6 +581,16 @@ Lemma option_validI {A : cmraT} (mx : option A) :
mx match mx with Some x => x | None => True end.
Proof. unseal. by destruct mx. Qed.
(* Contractive functions *)
Lemma contractiveI {A B : ofeT} (f : A B) :
Contractive f ( x y, (x y) f x f y).
split; unseal; intros Hf.
- intros x y; split=> -[|n] z _ /=; eauto using contractive_0, contractive_S.
- intros [|i] x y Hxy; apply (uPred_in_entails _ _ (Hf x y) _ );
simpl; eauto using ucmra_unit_validN.
(* Functions *)
Lemma cofe_funC_equivI {A B} (f g : A -c> B) : f g x, f x g x.
Proof. by unseal. Qed.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment