Commit eba897cc authored by Robbert Krebbers's avatar Robbert Krebbers

Fix implicit arguments of own_empty.

There is no way to infer the cmra A, so we make it explicit.
parent e3cb5b14
......@@ -139,7 +139,7 @@ Arguments own_update {_ _} [_] _ _ _ _.
Arguments own_update_2 {_ _} [_] _ _ _ _ _.
Arguments own_update_3 {_ _} [_] _ _ _ _ _ _.
Lemma own_empty `{inG Σ (A:ucmraT)} γ : True == own γ .
Lemma own_empty A `{inG Σ (A:ucmraT)} γ : True == own γ .
Proof.
rewrite ownM_empty !own_eq /own_def.
apply bupd_ownM_update, iprod_singleton_update_empty.
......
......@@ -54,7 +54,7 @@ Section proofs.
Lemma tl_inv_alloc tid E N P : P ={E}= tl_inv tid N P.
Proof.
iIntros "HP".
iMod (own_empty (A:=prodUR coPset_disjUR (gset_disjUR positive)) tid) as "Hempty".
iMod (own_empty (prodUR coPset_disjUR (gset_disjUR positive)) tid) as "Hempty".
iMod (own_updateP with "Hempty") as ([m1 m2]) "[Hm Hown]".
{ apply prod_updateP'. apply cmra_updateP_id, (reflexivity (R:=eq)).
apply (gset_disj_alloc_empty_updateP_strong' (λ i, i nclose N)).
......
......@@ -53,7 +53,7 @@ Global Instance ownI_persistent i P : PersistentP (ownI i P).
Proof. rewrite /ownI. apply _. Qed.
Lemma ownE_empty : True == ownE .
Proof. by rewrite (own_empty (A:=coPset_disjUR) enabled_name). Qed.
Proof. by rewrite (own_empty (coPset_disjUR) enabled_name). Qed.
Lemma ownE_op E1 E2 : E1 E2 ownE (E1 E2) ownE E1 ownE E2.
Proof. intros. by rewrite /ownE -own_op coPset_disj_union. Qed.
Lemma ownE_disjoint E1 E2 : ownE E1 ownE E2 E1 E2.
......@@ -68,7 +68,7 @@ Lemma ownE_singleton_twice i : ownE {[i]} ∗ ownE {[i]} ⊢ False.
Proof. rewrite ownE_disjoint. iIntros (?); set_solver. Qed.
Lemma ownD_empty : True == ownD .
Proof. by rewrite (own_empty (A:=gset_disjUR _) disabled_name). Qed.
Proof. by rewrite (own_empty (gset_disjUR positive) disabled_name). Qed.
Lemma ownD_op E1 E2 : E1 E2 ownD (E1 E2) ownD E1 ownD E2.
Proof. intros. by rewrite /ownD -own_op gset_disj_union. Qed.
Lemma ownD_disjoint E1 E2 : ownD E1 ownD E2 E1 E2.
......@@ -126,7 +126,7 @@ Lemma ownI_alloc φ P :
wsat P == i, (φ i) wsat ownI i P.
Proof.
iIntros (Hfresh) "[Hw HP]". iDestruct "Hw" as (I) "[? HI]".
iMod (own_empty (A:=gset_disjUR positive) disabled_name) as "HE".
iMod (own_empty (gset_disjUR positive) disabled_name) as "HE".
iMod (own_updateP with "HE") as "HE".
{ apply (gset_disj_alloc_empty_updateP_strong' (λ i, I !! i = None φ i)).
intros E. destruct (Hfresh (E dom _ I))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment