Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Tej Chajed
iris
Commits
eacc4197
Commit
eacc4197
authored
Aug 24, 2016
by
Zhen Zhang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Abstract lock interface
parent
a1171d02
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
202 additions
and
141 deletions
+202
-141
_CoqProject
_CoqProject
+1
-0
heap_lang/lib/lock.v
heap_lang/lib/lock.v
+40
-80
heap_lang/lib/spin_lock.v
heap_lang/lib/spin_lock.v
+91
-0
heap_lang/lib/ticket_lock.v
heap_lang/lib/ticket_lock.v
+70
-61
No files found.
_CoqProject
View file @
eacc4197
...
@@ -97,6 +97,7 @@ heap_lang/lib/spawn.v
...
@@ -97,6 +97,7 @@ heap_lang/lib/spawn.v
heap_lang/lib/par.v
heap_lang/lib/par.v
heap_lang/lib/assert.v
heap_lang/lib/assert.v
heap_lang/lib/lock.v
heap_lang/lib/lock.v
heap_lang/lib/spin_lock.v
heap_lang/lib/ticket_lock.v
heap_lang/lib/ticket_lock.v
heap_lang/lib/counter.v
heap_lang/lib/counter.v
heap_lang/lib/barrier/barrier.v
heap_lang/lib/barrier/barrier.v
...
...
heap_lang/lib/lock.v
View file @
eacc4197
From
iris
.
program_logic
Require
Export
weakestpre
.
(** Abstract Lock Interface **)
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
proofmode
Require
Import
invariants
tactics
.
From
iris
.
heap_lang
Require
Import
heap
notation
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
algebra
Require
Import
excl
.
Structure
lock
Σ
`
{!
heapG
Σ
}
:
=
Lock
{
(* -- operations -- *)
newlock
:
val
;
acquire
:
val
;
release
:
val
;
(* -- predicates -- *)
(* name is used to associate locked with is_lock *)
name
:
Type
;
is_lock
(
N
:
namespace
)
(
γ
:
name
)
(
lock
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
;
locked
(
γ
:
name
)
:
iProp
Σ
;
(* -- general properties -- *)
is_lock_ne
N
γ
lk
n
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
N
γ
lk
)
;
is_lock_persistent
N
γ
lk
R
:
PersistentP
(
is_lock
N
γ
lk
R
)
;
locked_timeless
γ
:
TimelessP
(
locked
γ
)
;
locked_exclusive
γ
:
locked
γ
★
locked
γ
⊢
False
;
(* -- operation specs -- *)
newlock_spec
N
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
l
γ
,
is_lock
N
γ
l
R
-
★
Φ
l
)
⊢
WP
newlock
#()
{{
Φ
}}
;
acquire_spec
N
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
N
γ
lk
R
★
(
locked
γ
-
★
R
-
★
Φ
#())
⊢
WP
acquire
lk
{{
Φ
}}
;
release_spec
N
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
N
γ
lk
R
★
locked
γ
★
R
★
Φ
#()
⊢
WP
release
lk
{{
Φ
}}
}.
Arguments
newlock
{
_
_
}
_
.
Arguments
acquire
{
_
_
}
_
.
Arguments
release
{
_
_
}
_
.
Arguments
is_lock
{
_
_
}
_
_
_
_
_
.
Arguments
locked
{
_
_
}
_
_
.
Existing
Instances
is_lock_ne
is_lock_persistent
locked_timeless
.
Instance
is_lock_proper
Σ
`
{!
heapG
Σ
}
(
L
:
lock
Σ
)
N
lk
R
:
Proper
((
≡
)
==>
(
≡
))
(
is_lock
L
N
lk
R
)
:
=
ne_proper
_
.
Definition
newlock
:
val
:
=
λ
:
<>,
ref
#
false
.
Definition
acquire
:
val
:
=
rec
:
"acquire"
"l"
:
=
if
:
CAS
"l"
#
false
#
true
then
#()
else
"acquire"
"l"
.
Definition
release
:
val
:
=
λ
:
"l"
,
"l"
<-
#
false
.
Global
Opaque
newlock
acquire
release
.
(** The CMRA we need. *)
(* Not bundling heapG, as it may be shared with other users. *)
Class
lockG
Σ
:
=
LockG
{
lock_tokG
:
>
inG
Σ
(
exclR
unitC
)
}.
Definition
lock
Σ
:
gFunctors
:
=
#[
GFunctor
(
constRF
(
exclR
unitC
))].
Instance
subG_lock
Σ
{
Σ
}
:
subG
lock
Σ
Σ
→
lockG
Σ
.
Proof
.
intros
[?%
subG_inG
_
]%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Context
`
{!
heapG
Σ
,
!
lockG
Σ
}
(
N
:
namespace
).
Definition
lock_inv
(
γ
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
b
:
bool
,
l
↦
#
b
★
if
b
then
True
else
own
γ
(
Excl
())
★
R
)%
I
.
Definition
is_lock
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
l
R
))%
I
.
Definition
locked
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
,
heapN
⊥
N
∧
heap_ctx
∧
inv
N
(
lock_inv
γ
l
R
)
∧
own
γ
(
Excl
()))%
I
.
Global
Instance
lock_inv_ne
n
γ
l
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
l
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
locked_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
locked
l
).
Proof
.
solve_proper
.
Qed
.
(** The main proofs. *)
Global
Instance
is_lock_persistent
l
R
:
PersistentP
(
is_lock
l
R
).
Proof
.
apply
_
.
Qed
.
Lemma
locked_is_lock
l
R
:
locked
l
R
⊢
is_lock
l
R
.
Proof
.
rewrite
/
is_lock
.
iDestruct
1
as
(
γ
)
"(?&?&?&_)"
;
eauto
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-
★
Φ
#
l
)
⊢
WP
newlock
#()
{{
Φ
}}.
Proof
.
iIntros
(?)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
/=.
wp_seq
.
wp_alloc
l
as
"Hl"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
)
"Hγ"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
l
R
)
with
"[-HΦ]"
)
as
"#?"
.
{
iIntros
"!>"
.
iExists
false
.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
γ
;
eauto
.
Qed
.
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
l
R
★
(
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
acquire
#
l
{{
Φ
}}.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
)
"(%&#?&#?)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(
CAS
_
_
_
)%
E
.
iInv
N
as
([])
"[Hl HR]"
"Hclose"
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl]"
)
;
first
(
iNext
;
iExists
true
;
eauto
).
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
-
wp_cas_suc
.
iDestruct
"HR"
as
"[Hγ HR]"
.
iVs
(
"Hclose"
with
"[Hl]"
)
;
first
(
iNext
;
iExists
true
;
eauto
).
iVsIntro
.
wp_if
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
iExists
γ
;
eauto
.
Qed
.
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
)
:
locked
l
R
★
R
★
Φ
#()
⊢
WP
release
#
l
{{
Φ
}}.
Proof
.
iIntros
"(Hl&HR&HΦ)"
;
iDestruct
"Hl"
as
(
γ
)
"(% & #? & #? & Hγ)"
.
rewrite
/
release
/=.
wp_let
.
iInv
N
as
(
b
)
"[Hl _]"
"Hclose"
.
wp_store
.
iFrame
"HΦ"
.
iApply
"Hclose"
.
iNext
.
iExists
false
.
by
iFrame
.
Qed
.
End
proof
.
heap_lang/lib/spin_lock.v
0 → 100644
View file @
eacc4197
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
proofmode
Require
Import
invariants
tactics
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
algebra
Require
Import
excl
.
From
iris
.
heap_lang
.
lib
Require
Import
lock
.
Definition
newlock
:
val
:
=
λ
:
<>,
ref
#
false
.
Definition
acquire
:
val
:
=
rec
:
"acquire"
"l"
:
=
if
:
CAS
"l"
#
false
#
true
then
#()
else
"acquire"
"l"
.
Definition
release
:
val
:
=
λ
:
"l"
,
"l"
<-
#
false
.
Global
Opaque
newlock
acquire
release
.
(** The CMRA we need. *)
(* Not bundling heapG, as it may be shared with other users. *)
Class
lockG
Σ
:
=
LockG
{
lock_tokG
:
>
inG
Σ
(
exclR
unitC
)
}.
Definition
lock
Σ
:
gFunctors
:
=
#[
GFunctor
(
constRF
(
exclR
unitC
))].
Instance
subG_lock
Σ
{
Σ
}
:
subG
lock
Σ
Σ
→
lockG
Σ
.
Proof
.
intros
[?%
subG_inG
_
]%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Context
`
{!
heapG
Σ
,
!
lockG
Σ
}
(
N
:
namespace
).
Definition
lock_inv
(
γ
:
gname
)
(
l
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
b
:
bool
,
l
↦
#
b
★
if
b
then
True
else
own
γ
(
Excl
())
★
R
)%
I
.
Definition
is_lock
(
γ
:
gname
)
(
lk
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
(
l
:
loc
),
heapN
⊥
N
∧
heap_ctx
∧
lk
=
#
l
∧
inv
N
(
lock_inv
γ
l
R
))%
I
.
Definition
locked
(
γ
:
gname
)
:
iProp
Σ
:
=
own
γ
(
Excl
())%
I
.
Lemma
locked_exclusive
(
γ
:
gname
)
:
(
locked
γ
★
locked
γ
⊢
False
)%
I
.
Proof
.
iIntros
"[Hl Hl']"
.
iCombine
"Hl"
"Hl'"
as
"Hl"
.
by
iDestruct
(
own_valid
with
"Hl"
)
as
%[].
Qed
.
Global
Instance
lock_inv_ne
n
γ
l
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
l
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
γ
l
).
Proof
.
solve_proper
.
Qed
.
(* Global Instance locked_ne n γ : Proper (dist n ==> dist n) (locked γ). *)
(* Proof. solve_proper. Qed. *)
(** The main proofs. *)
Global
Instance
is_lock_persistent
γ
l
R
:
PersistentP
(
is_lock
γ
l
R
).
Proof
.
apply
_
.
Qed
.
(* Lemma locked_is_lock lk R : locked lk R ⊢ is_lock lk R. *)
(* Proof. rewrite /is_lock. iDestruct 1 as (γ l) "(?&?&?&?&_)". iExists γ, l. auto. Qed. *)
Global
Instance
locked_timeless
γ
:
TimelessP
(
locked
γ
).
Proof
.
apply
_
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
lk
γ
,
is_lock
γ
lk
R
-
★
Φ
lk
)
⊢
WP
newlock
#()
{{
Φ
}}.
Proof
.
iIntros
(?)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
l
as
"Hl"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
)
"Hγ"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
l
R
)
with
"[-HΦ]"
)
as
"#?"
.
{
iIntros
"!>"
.
iExists
false
.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
l
.
eauto
.
Qed
.
Lemma
acquire_spec
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
γ
lk
R
★
(
locked
γ
-
★
R
-
★
Φ
#())
⊢
WP
acquire
lk
{{
Φ
}}.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
l
)
"(% & #? & % & #?)"
.
subst
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(
CAS
_
_
_
)%
E
.
iInv
N
as
([])
"[Hl HR]"
"Hclose"
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hl]"
)
;
first
(
iNext
;
iExists
true
;
eauto
).
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
-
wp_cas_suc
.
iDestruct
"HR"
as
"[Hγ HR]"
.
iVs
(
"Hclose"
with
"[Hl]"
)
;
first
(
iNext
;
iExists
true
;
eauto
).
iVsIntro
.
wp_if
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
by
iFrame
.
Qed
.
Lemma
release_spec
γ
lk
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
γ
lk
R
★
locked
γ
★
R
★
Φ
#()
⊢
WP
release
lk
{{
Φ
}}.
Proof
.
iIntros
"(Hlock & Hlocked & HR & HΦ)"
.
iDestruct
"Hlock"
as
(
l
)
"(% & #? & % & #?)"
.
subst
.
rewrite
/
release
.
wp_let
.
iInv
N
as
(
b
)
"[Hl _]"
"Hclose"
.
wp_store
.
iFrame
"HΦ"
.
iApply
"Hclose"
.
iNext
.
iExists
false
.
by
iFrame
.
Qed
.
End
proof
.
Definition
spin_lock
`
{!
heapG
Σ
,
!
lockG
Σ
}
:
=
Lock
_
_
newlock
acquire
release
gname
is_lock
locked
_
_
_
locked_exclusive
newlock_spec
acquire_spec
release_spec
.
heap_lang/lib/ticket_lock.v
View file @
eacc4197
...
@@ -4,6 +4,7 @@ From iris.program_logic Require Import auth.
...
@@ -4,6 +4,7 @@ From iris.program_logic Require Import auth.
From
iris
.
proofmode
Require
Import
invariants
.
From
iris
.
proofmode
Require
Import
invariants
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
algebra
Require
Import
gset
.
From
iris
.
algebra
Require
Import
gset
.
From
iris
.
heap_lang
.
lib
Require
Import
lock
.
Import
uPred
.
Import
uPred
.
Definition
wait_loop
:
val
:
=
Definition
wait_loop
:
val
:
=
...
@@ -43,65 +44,70 @@ Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
...
@@ -43,65 +44,70 @@ Instance subG_tlockΣ {Σ} : subG tlockΣ Σ → tlockG Σ.
Proof
.
intros
[?
[?%
subG_inG
_
]%
subG_inv
]%
subG_inv
.
split
;
apply
_
.
Qed
.
Proof
.
intros
[?
[?%
subG_inG
_
]%
subG_inv
]%
subG_inv
.
split
;
apply
_
.
Qed
.
Section
proof
.
Section
proof
.
Context
`
{!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
)
(
HN
:
heapN
⊥
N
)
.
Context
`
{!
heapG
Σ
,
!
tlockG
Σ
}
(
N
:
namespace
).
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:
=
Definition
tickets_inv
(
n
:
nat
)
(
gs
:
gset_disjUR
nat
)
:
iProp
Σ
:
=
(
gs
=
GSet
(
seq_set
0
n
))%
I
.
(
gs
=
GSet
(
seq_set
0
n
))%
I
.
Definition
lock_inv
(
γ
1
γ
2
:
gname
)
(
lo
ln
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
Definition
lock_inv
(
γ
1
γ
2
:
gname
)
(
lo
ln
:
loc
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
(
o
n
:
nat
),
(
∃
(
o
n
:
nat
),
lo
↦
#
o
★
ln
↦
#
n
★
lo
↦
#
o
★
ln
↦
#
n
★
auth_inv
γ
1
(
tickets_inv
n
)
★
auth_inv
γ
1
(
tickets_inv
n
)
★
((
own
γ
2
(
Excl
())
★
R
)
∨
auth_own
γ
1
(
GSet
{[
o
]})))%
I
.
((
own
γ
2
(
Excl
())
★
R
)
∨
auth_own
γ
1
(
GSet
{[
o
]})))%
I
.
Definition
is_lock
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
Definition
is_lock
(
γ
s
:
gname
*
gname
)
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
lo
ln
R
))%
I
.
(
∃
(
lo
ln
:
loc
),
heapN
⊥
N
∧
heap_ctx
∧
Definition
issued
(
l
:
val
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
(
fst
γ
s
)
(
snd
γ
s
)
lo
ln
R
))%
I
.
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
lo
ln
R
)
∧
auth_own
γ
1
(
GSet
{[
x
]}))%
I
.
Definition
issued
(
γ
s
:
gname
*
gname
)
(
l
:
val
)
(
x
:
nat
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
(
∃
(
lo
ln
:
loc
),
Definition
locked
(
l
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
:
=
heapN
⊥
N
∧
heap_ctx
∧
(
∃
γ
1
γ
2
(
lo
ln
:
loc
),
heap_ctx
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
γ
1
γ
2
lo
ln
R
)
∧
l
=
(#
lo
,
#
ln
)%
V
∧
inv
N
(
lock_inv
(
fst
γ
s
)
(
snd
γ
s
)
lo
ln
R
)
∧
own
γ
2
(
Excl
()))%
I
.
auth_own
(
fst
γ
s
)
(
GSet
{[
x
]}))%
I
.
Global
Instance
lock_inv_ne
n
γ
1
γ
2
lo
ln
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
1
γ
2
lo
ln
).
Definition
locked
(
γ
s
:
gname
*
gname
)
:
iProp
Σ
:
=
own
(
snd
γ
s
)
(
Excl
())%
I
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
l
).
Global
Instance
lock_inv_ne
n
γ
1
γ
2
lo
ln
:
Proper
(
dist
n
==>
dist
n
)
(
lock_inv
γ
1
γ
2
lo
ln
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
locked_ne
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
locked
l
).
Global
Instance
is_lock_ne
γ
s
n
l
:
Proper
(
dist
n
==>
dist
n
)
(
is_lock
γ
s
l
).
Proof
.
solve_proper
.
Qed
.
Proof
.
solve_proper
.
Qed
.
Global
Instance
is_lock_persistent
γ
s
l
R
:
PersistentP
(
is_lock
γ
s
l
R
).
Global
Instance
is_lock_persistent
l
R
:
PersistentP
(
is_lock
l
R
).
Proof
.
apply
_
.
Qed
.
Proof
.
apply
_
.
Qed
.
Global
Instance
locked_timeless
γ
s
:
TimelessP
(
locked
γ
s
).
Proof
.
apply
_
.
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heap_ctx
★
R
★
(
∀
l
,
is_lock
l
R
-
★
Φ
l
)
⊢
WP
newlock
#()
{{
Φ
}}.
Lemma
locked_exclusive
(
γ
s
:
gname
*
gname
)
:
(
locked
γ
s
★
locked
γ
s
⊢
False
)%
I
.
Proof
.
iIntros
"[Hl Hl']"
.
iCombine
"Hl"
"Hl'"
as
"Hl"
.
by
iDestruct
(
own_valid
with
"Hl"
)
as
%[].
Qed
.
Lemma
newlock_spec
(
R
:
iProp
Σ
)
Φ
:
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
lk
γ
s
,
is_lock
γ
s
lk
R
-
★
Φ
lk
)
⊢
WP
newlock
#()
{{
Φ
}}.
Proof
.
iIntros
(
HN
)
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
.
wp_seq
.
wp_alloc
lo
as
"Hlo"
.
wp_alloc
ln
as
"Hln"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl'
∅
)
∅
)
{[
γ
2
]})
as
(
γ
1
)
"[% Hγ1]"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
1
γ
2
lo
ln
R
)
with
"[-HΦ]"
).
-
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
iSplitL
"Hγ1"
.
+
rewrite
/
auth_inv
.
iExists
(
GSet
∅
).
by
iFrame
.
+
iLeft
.
by
iFrame
.
-
iVsIntro
.
iSpecialize
(
"HΦ"
$!
(#
lo
,
#
ln
)%
V
(
γ
1
,
γ
2
)).
iApply
"HΦ"
.
iExists
lo
,
ln
.
iSplit
;
by
eauto
.
Qed
.
Lemma
wait_loop_spec
γ
s
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
issued
γ
s
l
x
R
★
(
locked
γ
s
-
★
R
-
★
Φ
#())
⊢
WP
wait_loop
#
x
l
{{
Φ
}}.
Proof
.
Proof
.
iIntros
"(#Hh & HR & HΦ)"
.
rewrite
/
newlock
/=.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
lo
ln
)
"(% & #? & % & #? & Ht)"
.
wp_seq
.
wp_alloc
lo
as
"Hlo"
.
wp_alloc
ln
as
"Hln"
.
iVs
(
own_alloc
(
Excl
()))
as
(
γ
2
)
"Hγ2"
;
first
done
.
iVs
(
own_alloc_strong
(
Auth
(
Excl'
∅
)
∅
)
{[
γ
2
]})
as
(
γ
1
)
"[% Hγ1]"
;
first
done
.
iVs
(
inv_alloc
N
_
(
lock_inv
γ
1
γ
2
lo
ln
R
)
with
"[-HΦ]"
).
{
iNext
.
rewrite
/
lock_inv
.
iExists
0
%
nat
,
0
%
nat
.
iFrame
.
iSplitL
"Hγ1"
.
{
rewrite
/
auth_inv
.
iExists
(
GSet
∅
).
by
iFrame
.
}
iLeft
.
by
iFrame
.
}
iVsIntro
.
iApply
"HΦ"
.
iExists
γ
1
,
γ
2
,
lo
,
ln
.
iSplit
;
by
auto
.
Qed
.
Lemma
wait_loop_spec
l
x
R
(
Φ
:
val
→
iProp
Σ
)
:
issued
l
x
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
wait_loop
#
x
l
{{
Φ
}}.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(#? & % & #? & Ht)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_let
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_let
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
"Hclose"
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
"Hclose"
.
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[->|
Hneq
].
wp_load
.
destruct
(
decide
(
x
=
o
))
as
[->|
Hneq
].
...
@@ -110,7 +116,7 @@ Proof.
...
@@ -110,7 +116,7 @@ Proof.
{
iNext
.
iExists
o
,
n
.
iFrame
.
eauto
.
}
{
iNext
.
iExists
o
,
n
.
iFrame
.
eauto
.
}
iVsIntro
.
wp_let
.
wp_op
=>[
_
|[]]
//.
iVsIntro
.
wp_let
.
wp_op
=>[
_
|[]]
//.
wp_if
.
iVsIntro
.
wp_if
.
iVsIntro
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
iExists
γ
1
,
γ
2
,
lo
,
ln
;
eauto
.
iApply
(
"HΦ"
with
"[-HR] HR"
).
eauto
.
+
iExFalso
.
iCombine
"Ht"
"Haown"
as
"Haown"
.
+
iExFalso
.
iCombine
"Ht"
"Haown"
as
"Haown"
.
iDestruct
(
auth_own_valid
with
"Haown"
)
as
%
?%
gset_disj_valid_op
.
iDestruct
(
auth_own_valid
with
"Haown"
)
as
%
?%
gset_disj_valid_op
.
set_solver
.
set_solver
.
...
@@ -120,10 +126,10 @@ Proof.
...
@@ -120,10 +126,10 @@ Proof.
wp_if
.
iApply
(
"IH"
with
"Ht"
).
by
iExact
"HΦ"
.
wp_if
.
iApply
(
"IH"
with
"Ht"
).
by
iExact
"HΦ"
.
Qed
.
Qed
.
Lemma
acquire_spec
l
R
(
Φ
:
val
→
iProp
Σ
)
:
Lemma
acquire_spec
γ
s
l
R
(
Φ
:
val
→
iProp
Σ
)
:
is_lock
l
R
★
(
∀
l
,
locked
l
R
-
★
R
-
★
Φ
#())
⊢
WP
acquire
l
{{
Φ
}}.
is_lock
γ
s
l
R
★
(
locked
γ
s
-
★
R
-
★
Φ
#())
⊢
WP
acquire
l
{{
Φ
}}.
Proof
.
Proof
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(#? & % & #?)"
.
iIntros
"[Hl HΦ]"
.
iDestruct
"Hl"
as
(
lo
ln
)
"(
% &
#? & % & #?)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(!
_
)%
E
.
subst
.
wp_proj
.
iL
ö
b
as
"IH"
.
wp_rec
.
wp_bind
(!
_
)%
E
.
subst
.
wp_proj
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
"Hclose"
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Ha]]"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hlo Hln Ha]"
).
wp_load
.
iVs
(
"Hclose"
with
"[Hlo Hln Ha]"
).
...
@@ -145,8 +151,8 @@ Proof.
...
@@ -145,8 +151,8 @@ Proof.
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
rewrite
Nat2Z
.
inj_succ
-
Z
.
add_1_r
.
iFrame
.
iExists
(
GSet
(
seq_set
0
(
S
n
))).
by
iFrame
.
}
iFrame
.
iExists
(
GSet
(
seq_set
0
(
S
n
))).
by
iFrame
.
}
iVsIntro
.
wp_if
.
iVsIntro
.
wp_if
.
iApply
(
wait_loop_spec
(#
lo
,
#
ln
)).
iApply
(
wait_loop_spec
γ
s
(#
lo
,
#
ln
)).
iSplitR
"HΦ"
;
last
by
done
.
iSplitR
"HΦ"
;
last
by
auto
.
rewrite
/
issued
/
auth_own
;
eauto
10
.
rewrite
/
issued
/
auth_own
;
eauto
10
.
-
wp_cas_fail
.
-
wp_cas_fail
.
iVs
(
"Hclose"
with
"[Hlo' Hln' Hainv Haown]"
).
iVs
(
"Hclose"
with
"[Hlo' Hln' Hainv Haown]"
).
...
@@ -154,10 +160,10 @@ Proof.
...
@@ -154,10 +160,10 @@ Proof.
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
iVsIntro
.
wp_if
.
by
iApply
"IH"
.
Qed
.
Qed
.
Lemma
release_spec
R
l
(
Φ
:
val
→
iProp
Σ
)
:
Lemma
release_spec
γ
s
l
R
(
Φ
:
val
→
iProp
Σ
)
:
lock
ed
l
R
★
R
★
Φ
#()
⊢
WP
release
l
{{
Φ
}}.
is_
lock
γ
s
l
R
★
locked
γ
s
★
R
★
Φ
#()
⊢
WP
release
l
{{
Φ
}}.
Proof
.
Proof
.
iIntros
"(Hl & HR & HΦ)"
;
iDestruct
"Hl"
as
(
γ
1
γ
2
lo
ln
)
"(#? & % & #?
& Hγ
)"
.
iIntros
"(Hl &
Hγ &
HR & HΦ)"
.
iDestruct
"Hl"
as
(
lo
ln
)
"(
% &
#? & % & #?)"
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iL
ö
b
as
"IH"
.
wp_rec
.
subst
.
wp_proj
.
wp_bind
(!
_
)%
E
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Hr]]"
"Hclose"
.
iInv
N
as
(
o
n
)
"[Hlo [Hln Hr]]"
"Hclose"
.
wp_load
.
iVs
(
"Hclose"
with
"[Hlo Hln Hr]"
).
wp_load
.
iVs
(
"Hclose"
with
"[Hlo Hln Hr]"
).
...
@@ -182,3 +188,6 @@ Qed.
...
@@ -182,3 +188,6 @@ Qed.
End
proof
.
End
proof
.
Typeclasses
Opaque
is_lock
issued
locked
.
Typeclasses
Opaque
is_lock
issued
locked
.
Definition
ticket_lock
`
{!
heapG
Σ
,
!
tlockG
Σ
}
:
=
Lock
_
_
newlock
acquire
release
(
gname
*
gname
)
is_lock
locked
_
_
_
locked_exclusive
newlock_spec
acquire_spec
release_spec
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment