Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
iris
Commits
d9e87db3
Commit
d9e87db3
authored
Feb 18, 2016
by
Robbert Krebbers
Browse files
Fix broken sts_own_proper instance.
parent
035f0b29
Changes
1
Hide whitespace changes
Inline
Side-by-side
program_logic/sts.v
View file @
d9e87db3
...
@@ -42,8 +42,8 @@ Section sts.
...
@@ -42,8 +42,8 @@ Section sts.
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_inv
;
setoid_rewrite
H
φ
.
Qed
.
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_inv
;
setoid_rewrite
H
φ
.
Qed
.
Global
Instance
sts_ownS_proper
γ
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
sts_ownS
γ
).
Global
Instance
sts_ownS_proper
γ
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
sts_ownS
γ
).
Proof
.
intros
S1
S2
HS
T1
T2
HT
.
by
rewrite
/
sts_ownS
HS
HT
.
Qed
.
Proof
.
intros
S1
S2
HS
T1
T2
HT
.
by
rewrite
/
sts_ownS
HS
HT
.
Qed
.
Global
Instance
sts_own_proper
γ
s
:
Proper
((
≡
)
==>
(
≡
))
(
sts_own
S
γ
s
).
Global
Instance
sts_own_proper
γ
s
:
Proper
((
≡
)
==>
(
≡
))
(
sts_own
γ
s
).
Proof
.
intros
T1
T2
HT
.
by
rewrite
/
sts_own
S
HT
.
Qed
.
Proof
.
intros
T1
T2
HT
.
by
rewrite
/
sts_own
HT
.
Qed
.
Global
Instance
sts_ctx_ne
n
γ
N
:
Global
Instance
sts_ctx_ne
n
γ
N
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
sts_ctx
γ
N
).
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
sts_ctx
γ
N
).
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_ctx
H
φ
.
Qed
.
Proof
.
by
intros
φ
1
φ
2
H
φ
;
rewrite
/
sts_ctx
H
φ
.
Qed
.
...
@@ -61,8 +61,7 @@ Section sts.
...
@@ -61,8 +61,7 @@ Section sts.
Lemma
sts_own_weaken
E
γ
s
S
T1
T2
:
Lemma
sts_own_weaken
E
γ
s
S
T1
T2
:
T1
≡
T2
→
s
∈
S
→
sts
.
closed
S
T2
→
T1
≡
T2
→
s
∈
S
→
sts
.
closed
S
T2
→
sts_own
γ
s
T1
⊑
pvs
E
E
(
sts_ownS
γ
S
T2
).
sts_own
γ
s
T1
⊑
pvs
E
E
(
sts_ownS
γ
S
T2
).
(* FIXME for some reason, using "->" instead of "<-" does not work? *)
Proof
.
intros
->
??.
by
apply
own_update
,
sts_update_frag_up
.
Qed
.
Proof
.
intros
<-
?
?.
by
apply
own_update
,
sts_update_frag_up
.
Qed
.
Lemma
sts_ownS_op
γ
S1
S2
T1
T2
:
Lemma
sts_ownS_op
γ
S1
S2
T1
T2
:
T1
∩
T2
⊆
∅
→
sts
.
closed
S1
T1
→
sts
.
closed
S2
T2
→
T1
∩
T2
⊆
∅
→
sts
.
closed
S1
T1
→
sts
.
closed
S2
T2
→
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment