Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
iris
Commits
c0c05a2f
Commit
c0c05a2f
authored
Oct 06, 2017
by
Robbert Krebbers
Browse files
Add the plainness modality to the model of the base logic.
parent
65bde879
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/base_logic/primitive.v
View file @
c0c05a2f
...
...
@@ -97,6 +97,14 @@ Definition uPred_wand {M} := unseal uPred_wand_aux M.
Definition
uPred_wand_eq
:
@
uPred_wand
=
@
uPred_wand_def
:
=
seal_eq
uPred_wand_aux
.
Program
Definition
uPred_plainly_def
{
M
}
(
P
:
uPred
M
)
:
uPred
M
:
=
{|
uPred_holds
n
x
:
=
P
n
ε
|}.
Solve
Obligations
with
naive_solver
eauto
using
uPred_closed
,
ucmra_unit_validN
.
Definition
uPred_plainly_aux
:
seal
(@
uPred_plainly_def
).
by
eexists
.
Qed
.
Definition
uPred_plainly
{
M
}
:
=
unseal
uPred_plainly_aux
M
.
Definition
uPred_plainly_eq
:
@
uPred_plainly
=
@
uPred_plainly_def
:
=
seal_eq
uPred_plainly_aux
.
Program
Definition
uPred_persistently_def
{
M
}
(
P
:
uPred
M
)
:
uPred
M
:
=
{|
uPred_holds
n
x
:
=
P
n
(
core
x
)
|}.
Next
Obligation
.
...
...
@@ -176,6 +184,8 @@ Notation "∀ x .. y , P" :=
Notation
"∃ x .. y , P"
:
=
(
uPred_exist
(
λ
x
,
..
(
uPred_exist
(
λ
y
,
P
))
..)%
I
)
(
at
level
200
,
x
binder
,
y
binder
,
right
associativity
)
:
uPred_scope
.
Notation
"■ P"
:
=
(
uPred_plainly
P
)
(
at
level
20
,
right
associativity
)
:
uPred_scope
.
Notation
"□ P"
:
=
(
uPred_persistently
P
)
(
at
level
20
,
right
associativity
)
:
uPred_scope
.
Notation
"▷ P"
:
=
(
uPred_later
P
)
...
...
@@ -198,7 +208,8 @@ Notation "P -∗ Q" := (P ⊢ Q)
Module
uPred
.
Definition
unseal_eqs
:
=
(
uPred_pure_eq
,
uPred_and_eq
,
uPred_or_eq
,
uPred_impl_eq
,
uPred_forall_eq
,
uPred_exist_eq
,
uPred_internal_eq_eq
,
uPred_sep_eq
,
uPred_wand_eq
,
uPred_persistently_eq
,
uPred_exist_eq
,
uPred_internal_eq_eq
,
uPred_sep_eq
,
uPred_wand_eq
,
uPred_persistently_eq
,
uPred_plainly_eq
,
uPred_persistently_eq
,
uPred_later_eq
,
uPred_ownM_eq
,
uPred_cmra_valid_eq
,
uPred_bupd_eq
).
Ltac
unseal
:
=
rewrite
!
unseal_eqs
/=.
...
...
@@ -295,6 +306,13 @@ Proof.
Qed
.
Global
Instance
later_proper'
:
Proper
((
⊣
⊢
)
==>
(
⊣
⊢
))
(@
uPred_later
M
)
:
=
ne_proper
_
.
Global
Instance
plainly_ne
:
NonExpansive
(@
uPred_plainly
M
).
Proof
.
intros
n
P1
P2
HP
.
unseal
;
split
=>
n'
x
;
split
;
apply
HP
;
eauto
using
@
ucmra_unit_validN
.
Qed
.
Global
Instance
plainly_proper
:
Proper
((
⊣
⊢
)
==>
(
⊣
⊢
))
(@
uPred_plainly
M
)
:
=
ne_proper
_
.
Global
Instance
persistently_ne
:
NonExpansive
(@
uPred_persistently
M
).
Proof
.
intros
n
P1
P2
HP
.
...
...
@@ -421,6 +439,25 @@ Proof.
eapply
HPQR
;
eauto
using
cmra_validN_op_l
.
Qed
.
(* The plainness modality *)
Lemma
plainly_mono
P
Q
:
(
P
⊢
Q
)
→
■
P
⊢
■
Q
.
Proof
.
intros
HP
;
unseal
;
split
=>
n
x
?
/=.
apply
HP
,
ucmra_unit_validN
.
Qed
.
Lemma
plainly_elim'
P
:
■
P
⊢
□
P
.
Proof
.
unseal
;
split
;
simpl
;
eauto
using
uPred_mono
,
@
ucmra_unit_leastN
.
Qed
.
Lemma
plainly_idemp
P
:
■
P
⊢
■
■
P
.
Proof
.
unseal
;
split
=>
n
x
??
//.
Qed
.
Lemma
plainly_forall_2
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
∀
a
,
■
Ψ
a
)
⊢
(
■
∀
a
,
Ψ
a
).
Proof
.
by
unseal
.
Qed
.
Lemma
plainly_exist_1
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
■
∃
a
,
Ψ
a
)
⊢
(
∃
a
,
■
Ψ
a
).
Proof
.
by
unseal
.
Qed
.
Lemma
prop_ext
P
Q
:
■
((
P
→
Q
)
∧
(
Q
→
P
))
⊢
P
≡
Q
.
Proof
.
unseal
;
split
=>
n
x
?
/=
HPQ
;
split
=>
n'
x'
?
HP
;
split
;
eapply
HPQ
;
eauto
using
@
ucmra_unit_least
.
Qed
.
(* Always *)
Lemma
persistently_mono
P
Q
:
(
P
⊢
Q
)
→
□
P
⊢
□
Q
.
Proof
.
intros
HP
;
unseal
;
split
=>
n
x
?
/=.
by
apply
HP
,
cmra_core_validN
.
Qed
.
...
...
@@ -477,6 +514,8 @@ Proof.
Qed
.
Lemma
persistently_later
P
:
□
▷
P
⊣
⊢
▷
□
P
.
Proof
.
by
unseal
.
Qed
.
Lemma
plainly_later
P
:
■
▷
P
⊣
⊢
▷
■
P
.
Proof
.
by
unseal
.
Qed
.
(* Own *)
Lemma
ownM_op
(
a1
a2
:
M
)
:
...
...
@@ -512,7 +551,7 @@ Lemma cmra_valid_intro {A : cmraT} (a : A) : ✓ a → uPred_valid (M:=M) (✓ a
Proof
.
unseal
=>
?
;
split
=>
n
x
?
_
/=
;
by
apply
cmra_valid_validN
.
Qed
.
Lemma
cmra_valid_elim
{
A
:
cmraT
}
(
a
:
A
)
:
¬
✓
{
0
}
a
→
✓
a
⊢
False
.
Proof
.
unseal
=>
Ha
;
split
=>
n
x
??
;
apply
Ha
,
cmra_validN_le
with
n
;
auto
.
Qed
.
Lemma
p
ersistent
ly_cmra_valid_1
{
A
:
cmraT
}
(
a
:
A
)
:
✓
a
⊢
□
✓
a
.
Lemma
p
lain
ly_cmra_valid_1
{
A
:
cmraT
}
(
a
:
A
)
:
✓
a
⊢
■
✓
a
.
Proof
.
by
unseal
.
Qed
.
Lemma
cmra_valid_weaken
{
A
:
cmraT
}
(
a
b
:
A
)
:
✓
(
a
⋅
b
)
⊢
✓
a
.
Proof
.
unseal
;
split
=>
n
x
_;
apply
cmra_validN_op_l
.
Qed
.
...
...
@@ -549,6 +588,12 @@ Proof.
exists
(
y
⋅
x3
)
;
split
;
first
by
rewrite
-
assoc
.
exists
y
;
eauto
using
cmra_includedN_l
.
Qed
.
Lemma
bupd_plainly
P
:
(|==>
■
P
)
⊢
P
.
Proof
.
unseal
;
split
=>
n
x
Hnx
/=
Hng
.
destruct
(
Hng
n
ε
)
as
[?
[
_
Hng'
]]
;
try
rewrite
right_id
;
auto
.
eapply
uPred_mono
;
eauto
using
ucmra_unit_leastN
.
Qed
.
(* Products *)
Lemma
prod_equivI
{
A
B
:
ofeT
}
(
x
y
:
A
*
B
)
:
x
≡
y
⊣
⊢
x
.
1
≡
y
.
1
∧
x
.
2
≡
y
.
2
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment