Commit aec7c174 by Robbert Krebbers

### Some tweaks.

parent fa7dc440
 ... ... @@ -19,24 +19,23 @@ Section fractional. Implicit Types Φ : Qp → uPred M. Implicit Types p q : Qp. Lemma fractional_split `{Fractional _ Φ} p q : Lemma fractional_split `{!Fractional Φ} p q : Φ (p + q)%Qp ⊢ Φ p ∗ Φ q. Proof. by rewrite fractional. Qed. Lemma fractional_combine `{Fractional _ Φ} p q : Lemma fractional_combine `{!Fractional Φ} p q : Φ p ∗ Φ q ⊢ Φ (p + q)%Qp. Proof. by rewrite fractional. Qed. Lemma fractional_half_equiv `{Fractional _ Φ} p : Lemma fractional_half_equiv `{!Fractional Φ} p : Φ p ⊣⊢ Φ (p/2)%Qp ∗ Φ (p/2)%Qp. Proof. by rewrite -(fractional (p/2) (p/2)) Qp_div_2. Qed. Lemma fractional_half `{Fractional _ Φ} p : Lemma fractional_half `{!Fractional Φ} p : Φ p ⊢ Φ (p/2)%Qp ∗ Φ (p/2)%Qp. Proof. by rewrite fractional_half_equiv. Qed. Lemma half_fractional `{Fractional _ Φ} p q : Lemma half_fractional `{!Fractional Φ} p q : Φ (p/2)%Qp ∗ Φ (p/2)%Qp ⊢ Φ p. Proof. by rewrite -fractional_half_equiv. Qed. (** Fractional and logical connectives *) Global Instance persistent_fractional P : PersistentP P → Fractional (λ _, P). Proof. intros HP q q'. by apply uPred_derived.always_sep_dup. Qed. ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!