Commit 7abcc966 by Robbert Krebbers

### Get rid of `wp_done` and make more using of `IntoVal`.

parent 284ccdd5
 ... ... @@ -21,15 +21,15 @@ Context `{!heapG Σ, !spawnG Σ}. brought together. That is strictly stronger than first stripping a later and then merging them, as demonstrated by [tests/joining_existentials.v]. This is why these are not Texan triples. *) Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) e (f1 f2 : val) (Φ : val → iProp Σ) : to_val e = Some (f1,f2)%V → Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) e (f1 f2 : val) (Φ : val → iProp Σ) `{Hef : !IntoVal e (f1,f2)} : WP f1 #() {{ Ψ1 }} -∗ WP f2 #() {{ Ψ2 }} -∗ (▷ ∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) -∗ WP par e {{ Φ }}. Proof. iIntros (<-%of_to_val) "Hf1 Hf2 HΦ". apply of_to_val in Hef as <-. iIntros "Hf1 Hf2 HΦ". rewrite /par /=. wp_let. wp_proj. wp_apply (spawn_spec parN with "Hf1"); try wp_done; try solve_ndisj. wp_apply (spawn_spec parN with "Hf1"). iIntros (l) "Hl". wp_let. wp_proj. wp_bind (f2 _). iApply (wp_wand with "Hf2"); iIntros (v) "H2". wp_let. wp_apply (join_spec with "[\$Hl]"). iIntros (w) "H1". ... ... @@ -42,7 +42,7 @@ Lemma wp_par (Ψ1 Ψ2 : val → iProp Σ) (∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) -∗ WP e1 ||| e2 {{ Φ }}. Proof. iIntros "H1 H2 H". iApply (par_spec Ψ1 Ψ2 with "[H1] [H2] [H]"); try wp_done. iIntros "H1 H2 H". iApply (par_spec Ψ1 Ψ2 with "[H1] [H2] [H]"). by wp_let. by wp_let. auto. Qed. End proof.
 ... ... @@ -44,11 +44,10 @@ Global Instance join_handle_ne n l : Proof. solve_proper. Qed. (** The main proofs. *) Lemma spawn_spec (Ψ : val → iProp Σ) e (f : val) : to_val e = Some f → Lemma spawn_spec (Ψ : val → iProp Σ) e (f : val) `{Hef : !IntoVal e f} : {{{ WP f #() {{ Ψ }} }}} spawn e {{{ l, RET #l; join_handle l Ψ }}}. Proof. iIntros (<-%of_to_val Φ) "Hf HΦ". rewrite /spawn /=. apply of_to_val in Hef as <-. iIntros (Φ) "Hf HΦ". rewrite /spawn /=. wp_let. wp_alloc l as "Hl". wp_let. iMod (own_alloc (Excl ())) as (γ) "Hγ"; first done. iMod (inv_alloc N _ (spawn_inv γ l Ψ) with "[Hl]") as "#?". ... ...
 ... ... @@ -12,21 +12,7 @@ Ltac wp_bind_core K := | _ => etrans; [|fast_by apply (wp_bind K)]; simpl end. (* Solves side-conditions generated by the wp tactics *) Ltac wp_done := match goal with | |- Closed _ _ => solve_closed | |- is_Some (to_val _) => solve_to_val | |- to_val _ = Some _ => solve_to_val | |- language.to_val _ = Some _ => solve_to_val | _ => fast_done end. Ltac wp_value_head := etrans; [|eapply wp_value; wp_done]; simpl. (* Solves side-conditions generated specifically by wp_pure *) Ltac wp_pure_done := split_and?; wp_done. Ltac wp_value_head := etrans; [|eapply wp_value; apply _]; simpl. Lemma tac_wp_pure `{heapG Σ} K Δ Δ' E e1 e2 φ Φ : PureExec φ e1 e2 → ... ... @@ -46,9 +32,9 @@ Tactic Notation "wp_pure" open_constr(efoc) := | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => unify e' efoc; eapply (tac_wp_pure K); [unlock; simpl; apply _ (* PureExec *) |wp_pure_done (* The pure condition for PureExec *) |apply _ (* IntoLaters *) [simpl; apply _ (* PureExec *) |try fast_done (* The pure condition for PureExec *) |apply _ (* IntoLaters *) |simpl_subst; try wp_value_head (* new goal *)]) || fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a reduct" | _ => fail "wp_pure: not a 'wp'" ... ...
 ... ... @@ -215,12 +215,11 @@ Global Instance wp_mono' E e : Proper (pointwise_relation _ (⊢) ==> (⊢)) (@wp Λ Σ _ E e). Proof. by intros Φ Φ' ?; apply wp_mono. Qed. Lemma wp_value E Φ e v : to_val e = Some v → Φ v ⊢ WP e @ E {{ Φ }}. Lemma wp_value E Φ e v `{!IntoVal e v} : Φ v ⊢ WP e @ E {{ Φ }}. Proof. intros; rewrite -(of_to_val e v) //; by apply wp_value'. Qed. Lemma wp_value_fupd' E Φ v : (|={E}=> Φ v) ⊢ WP of_val v @ E {{ Φ }}. Proof. intros. by rewrite -wp_fupd -wp_value'. Qed. Lemma wp_value_fupd E Φ e v : to_val e = Some v → (|={E}=> Φ v) ⊢ WP e @ E {{ Φ }}. Lemma wp_value_fupd E Φ e v `{!IntoVal e v} : (|={E}=> Φ v) ⊢ WP e @ E {{ Φ }}. Proof. intros. rewrite -wp_fupd -wp_value //. Qed. Lemma wp_frame_l E e Φ R : R ∗ WP e @ E {{ Φ }} ⊢ WP e @ E {{ v, R ∗ Φ v }}. ... ... @@ -290,7 +289,6 @@ Section proofmode_classes. ElimModal (|={E1,E2}=> P) P (WP e @ E1 {{ Φ }}) (WP e @ E2 {{ v, |={E2,E1}=> Φ v }})%I | 100. Proof. intros. by rewrite /ElimModal fupd_frame_r wand_elim_r wp_atomic. Qed. End proofmode_classes. Hint Extern 0 (atomic _) => assumption : typeclass_instances.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!