Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
iris
Commits
4a934341
Commit
4a934341
authored
Nov 25, 2016
by
Robbert Krebbers
Browse files
More IntoX and FromX proofmode instances.
parent
5c3ad2f9
Changes
1
Hide whitespace changes
Inline
Side-by-side
proofmode/class_instances.v
View file @
4a934341
...
...
@@ -113,6 +113,9 @@ Global Instance into_wand_iff_r P Q : IntoWand (P ↔ Q) Q P.
Proof
.
apply
and_elim_r'
,
impl_wand
.
Qed
.
Global
Instance
into_wand_always
R
P
Q
:
IntoWand
R
P
Q
→
IntoWand
(
□
R
)
P
Q
.
Proof
.
rewrite
/
IntoWand
=>
->.
apply
always_elim
.
Qed
.
Global
Instance
into_wand_later
{
M
}
(
R
P
Q
:
uPred
M
)
:
IntoWand
R
P
Q
→
IntoWand
R
(
▷
P
)
(
▷
Q
)
|
100
.
Proof
.
rewrite
/
IntoWand
=>->.
by
rewrite
-
later_wand
-
later_intro
.
Qed
.
Global
Instance
into_wand_bupd
R
P
Q
:
IntoWand
R
P
Q
→
IntoWand
R
(|==>
P
)
(|==>
Q
)
|
100
.
Proof
.
rewrite
/
IntoWand
=>->.
apply
wand_intro_l
.
by
rewrite
bupd_wand_r
.
Qed
.
...
...
@@ -126,6 +129,8 @@ Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global
Instance
from_and_sep_persistent_r
P1
P2
:
PersistentP
P2
→
FromAnd
(
P1
∗
P2
)
P1
P2
|
10
.
Proof
.
intros
.
by
rewrite
/
FromAnd
always_and_sep_r
.
Qed
.
Global
Instance
from_and_pure
φ
ψ
:
@
FromAnd
M
⌜φ
∧
ψ⌝
⌜φ⌝
⌜ψ⌝
.
Proof
.
by
rewrite
/
FromAnd
pure_and
.
Qed
.
Global
Instance
from_and_always
P
Q1
Q2
:
FromAnd
P
Q1
Q2
→
FromAnd
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
FromAnd
=>
<-.
by
rewrite
always_and
.
Qed
.
...
...
@@ -140,6 +145,8 @@ Global Instance from_sep_ownM (a b1 b2 : M) :
FromOp
a
b1
b2
→
FromSep
(
uPred_ownM
a
)
(
uPred_ownM
b1
)
(
uPred_ownM
b2
).
Proof
.
intros
.
by
rewrite
/
FromSep
-
ownM_op
from_op
.
Qed
.
Global
Instance
from_sep_pure
φ
ψ
:
@
FromSep
M
⌜φ
∧
ψ⌝
⌜φ⌝
⌜ψ⌝
.
Proof
.
by
rewrite
/
FromSep
pure_and
sep_and
.
Qed
.
Global
Instance
from_sep_always
P
Q1
Q2
:
FromSep
P
Q1
Q2
→
FromSep
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
FromSep
=>
<-.
by
rewrite
always_sep
.
Qed
.
...
...
@@ -210,6 +217,13 @@ Global Instance into_and_and_persistent_r P Q :
PersistentP
Q
→
IntoAnd
false
(
P
∧
Q
)
P
Q
.
Proof
.
intros
;
by
rewrite
/
IntoAnd
/=
always_and_sep_r
.
Qed
.
Global
Instance
into_and_pure
p
φ
ψ
:
@
IntoAnd
M
p
⌜φ
∧
ψ⌝
⌜φ⌝
⌜ψ⌝
.
Proof
.
apply
mk_into_and_sep
.
by
rewrite
pure_and
always_and_sep_r
.
Qed
.
Global
Instance
into_and_always
p
P
Q1
Q2
:
IntoAnd
true
P
Q1
Q2
→
IntoAnd
p
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
IntoAnd
=>->.
destruct
p
;
by
rewrite
?always_and
always_and_sep_r
.
Qed
.
Global
Instance
into_and_later
p
P
Q1
Q2
:
IntoAnd
p
P
Q1
Q2
→
IntoAnd
p
(
▷
P
)
(
▷
Q1
)
(
▷
Q2
).
Proof
.
rewrite
/
IntoAnd
=>->.
destruct
p
;
by
rewrite
?later_and
?later_sep
.
Qed
.
...
...
@@ -330,6 +344,8 @@ Proof. done. Qed.
Global
Instance
from_or_bupd
P
Q1
Q2
:
FromOr
P
Q1
Q2
→
FromOr
(|==>
P
)
(|==>
Q1
)
(|==>
Q2
).
Proof
.
rewrite
/
FromOr
=><-.
apply
or_elim
;
apply
bupd_mono
;
auto
with
I
.
Qed
.
Global
Instance
from_or_pure
φ
ψ
:
@
FromOr
M
⌜φ
∨
ψ⌝
⌜φ⌝
⌜ψ⌝
.
Proof
.
by
rewrite
/
FromOr
pure_or
.
Qed
.
Global
Instance
from_or_always
P
Q1
Q2
:
FromOr
P
Q1
Q2
→
FromOr
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
FromOr
=>
<-.
by
rewrite
always_or
.
Qed
.
...
...
@@ -340,6 +356,11 @@ Proof. rewrite /FromOr=><-. by rewrite later_or. Qed.
(* IntoOr *)
Global
Instance
into_or_or
P
Q
:
IntoOr
(
P
∨
Q
)
P
Q
.
Proof
.
done
.
Qed
.
Global
Instance
into_or_pure
φ
ψ
:
@
IntoOr
M
⌜φ
∨
ψ⌝
⌜φ⌝
⌜ψ⌝
.
Proof
.
by
rewrite
/
IntoOr
pure_or
.
Qed
.
Global
Instance
into_or_always
P
Q1
Q2
:
IntoOr
P
Q1
Q2
→
IntoOr
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
IntoOr
=>->.
by
rewrite
always_or
.
Qed
.
Global
Instance
into_or_later
P
Q1
Q2
:
IntoOr
P
Q1
Q2
→
IntoOr
(
▷
P
)
(
▷
Q1
)
(
▷
Q2
).
Proof
.
rewrite
/
IntoOr
=>->.
by
rewrite
later_or
.
Qed
.
...
...
@@ -352,13 +373,26 @@ Global Instance from_exist_bupd {A} P (Φ : A → uPred M) :
Proof
.
rewrite
/
FromExist
=><-.
apply
exist_elim
=>
a
.
by
rewrite
-(
exist_intro
a
).
Qed
.
Global
Instance
from_exist_pure
{
A
}
(
φ
:
A
→
Prop
)
:
@
FromExist
M
A
⌜
∃
x
,
φ
x
⌝
(
λ
a
,
⌜φ
a
⌝
)%
I
.
Proof
.
by
rewrite
/
FromExist
pure_exist
.
Qed
.
Global
Instance
from_exist_always
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
FromExist
P
Φ
→
FromExist
(
□
P
)
(
λ
a
,
□
(
Φ
a
))%
I
.
Proof
.
rewrite
/
FromExist
=>
<-.
apply
exist_elim
=>
x
.
apply
always_mono
,
exist_intro
.
Qed
.
Global
Instance
from_exist_later
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
FromExist
P
Φ
→
FromExist
(
▷
P
)
(
λ
a
,
▷
(
Φ
a
))%
I
.
Proof
.
rewrite
/
FromExist
=>
<-.
apply
exist_elim
=>
x
.
apply
later_mono
,
exist_intro
.
Qed
.
Proof
.
rewrite
/
FromExist
=>
<-.
apply
exist_elim
=>
x
.
apply
later_mono
,
exist_intro
.
Qed
.
(* IntoExist *)
Global
Instance
into_exist_exist
{
A
}
(
Φ
:
A
→
uPred
M
)
:
IntoExist
(
∃
a
,
Φ
a
)
Φ
.
Proof
.
done
.
Qed
.
Global
Instance
into_exist_pure
{
A
}
(
φ
:
A
→
Prop
)
:
@
IntoExist
M
A
⌜
∃
x
,
φ
x
⌝
(
λ
a
,
⌜φ
a
⌝
)%
I
.
Proof
.
by
rewrite
/
IntoExist
pure_exist
.
Qed
.
Global
Instance
into_exist_later
{
A
}
P
(
Φ
:
A
→
uPred
M
)
:
IntoExist
P
Φ
→
Inhabited
A
→
IntoExist
(
▷
P
)
(
λ
a
,
▷
(
Φ
a
))%
I
.
Proof
.
rewrite
/
IntoExist
=>
HP
?.
by
rewrite
HP
later_exist
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment