Commit 25114815 by Robbert Krebbers

### Make iExact and iAssumption work under pvs and always.

parent 8bf6270c
 ... ... @@ -114,8 +114,7 @@ Proof. iSplitL "HR"; [|by iApply "Hwp"]. iPvs "Hvs1" "HR"; first by set_solver. iPvsIntro. iNext. iPvs "Hvs2" "Hvs1"; first by set_solver. by iPvsIntro. by iPvs "Hvs2" "Hvs1"; first by set_solver. Qed. Lemma ht_frame_step_r E E1 E2 P R1 R2 R3 e Φ : ... ... @@ -125,7 +124,7 @@ Lemma ht_frame_step_r E E1 E2 P R1 R2 R3 e Φ : Proof. iIntros {???} "[#Hvs1 [#Hvs2 #Hwp]]". setoid_rewrite (comm _ _ R3). iApply ht_frame_step_l; try eassumption. repeat iSplit; by iIntros "!". iApply (ht_frame_step_l _ _ E2); by repeat iSplit. Qed. Lemma ht_frame_step_l' E P R e Φ : ... ...
 ... ... @@ -71,10 +71,10 @@ Qed. Lemma vs_transitive' E P Q R : ((P ={E}=> Q) ∧ (Q ={E}=> R)) ⊢ (P ={E}=> R). Proof. apply vs_transitive; set_solver. Qed. Lemma vs_reflexive E P : P ={E}=> P. Proof. iIntros "! HP"; by iPvsIntro. Qed. Proof. by iIntros "! HP". Qed. Lemma vs_impl E P Q : □ (P → Q) ⊢ (P ={E}=> Q). Proof. iIntros "#HPQ ! HP". iPvsIntro. by iApply "HPQ". Qed. Proof. iIntros "#HPQ ! HP". by iApply "HPQ". Qed. Lemma vs_frame_l E1 E2 P Q R : (P ={E1,E2}=> Q) ⊢ (R ★ P ={E1,E2}=> R ★ Q). Proof. iIntros "#Hvs ! [HR HP]". iFrame "HR". by iApply "Hvs". Qed. ... ...
 ... ... @@ -260,8 +260,17 @@ Proof. Qed. (** * Basic rules *) Lemma tac_exact Δ i p P : envs_lookup i Δ = Some (p,P) → Δ ⊢ P. Proof. intros. by rewrite envs_lookup_sound' // sep_elim_l. Qed. Class ToAssumption (p : bool) (P Q : uPred M) := to_assumption : (if p then □ P else P) ⊢ Q. Global Instance to_assumption_exact p P : ToAssumption p P P. Proof. destruct p; by rewrite /ToAssumption ?always_elim. Qed. Global Instance to_assumption_always P Q : ToAssumption true P Q → ToAssumption true P (□ Q). Proof. rewrite /ToAssumption=><-. by rewrite always_always. Qed. Lemma tac_assumption Δ i p P Q : envs_lookup i Δ = Some (p,P) → ToAssumption p P Q → Δ ⊢ Q. Proof. intros. by rewrite envs_lookup_sound // sep_elim_l. Qed. Lemma tac_rename Δ Δ' i j p P Q : envs_lookup i Δ = Some (p,P) → ... ...
 ... ... @@ -7,6 +7,9 @@ Section pvs. Context {Λ : language} {Σ : iFunctor}. Implicit Types P Q : iProp Λ Σ. Global Instance to_assumption_pvs E p P Q : ToAssumption p P Q → ToAssumption p P (|={E}=> Q)%I. Proof. rewrite /ToAssumption=>->. apply pvs_intro. Qed. Global Instance sep_split_pvs E P Q1 Q2 : SepSplit P Q1 Q2 → SepSplit (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2). Proof. rewrite /SepSplit=><-. apply pvs_sep. Qed. ... ...
 ... ... @@ -63,13 +63,10 @@ Tactic Notation "iClear" "★" := (** * Assumptions *) Tactic Notation "iExact" constr(H) := eapply tac_exact with H _; (* (i:=H) *) env_cbv; lazymatch goal with | |- None = Some _ => fail "iExact:" H "not found" | |- Some (_, ?P) = Some _ => reflexivity || fail "iExact:" H ":" P "does not match goal" end. eapply tac_assumption with H _ _; (* (i:=H) *) [env_cbv; reflexivity || fail "iExact:" H "not found" |let P := match goal with |- ToAssumption _ ?P _ => P end in apply _ || fail "iExact:" H ":" P "does not match goal"]. Tactic Notation "iAssumptionCore" := let rec find Γ i P := ... ... @@ -82,9 +79,21 @@ Tactic Notation "iAssumptionCore" := | |- envs_lookup ?i (Envs ?Γp ?Γs) = Some (_, ?P) => is_evar i; first [find Γp i P | find Γs i P]; env_cbv; reflexivity end. Tactic Notation "iAssumption" := eapply tac_exact; iAssumptionCore; match goal with |- _ = Some (_, ?P) => fail "iAssumption:" P "not found" end. let Hass := fresh in let rec find p Γ Q := match Γ with | Esnoc ?Γ ?j ?P => first [pose proof (_ : ToAssumption p P Q) as Hass; apply (tac_assumption _ j p P); [env_cbv; reflexivity|apply Hass] |find p Γ Q] end in match goal with | |- of_envs (Envs ?Γp ?Γs) ⊢ ?Q => first [find true Γp Q | find false Γs Q |fail "iAssumption:" Q "not found"] end. (** * False *) Tactic Notation "iExFalso" := apply tac_ex_falso. ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!