Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Tej Chajed
iris
Commits
1d3902ca
Commit
1d3902ca
authored
Jan 24, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Misc tweaks.
parent
86967a81
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
20 deletions
+15
-20
theories/algebra/ofe.v
theories/algebra/ofe.v
+15
-20
No files found.
theories/algebra/ofe.v
View file @
1d3902ca
...
...
@@ -991,28 +991,25 @@ End limit_preserving.
Section
sigma
.
Context
{
A
:
ofeT
}
{
P
:
A
→
Prop
}.
Implicit
Types
x
:
sig
P
.
(* TODO: Find a better place for this Equiv instance. It also
should not depend on A being an OFE. *)
Instance
sig_equiv
:
Equiv
(
sig
P
)
:
=
λ
x1
x2
,
(
proj1_sig
x1
)
≡
(
proj1_sig
x2
).
Instance
sig_dist
:
Dist
(
sig
P
)
:
=
λ
n
x1
x2
,
(
proj1_sig
x1
)
≡
{
n
}
≡
(
proj1_sig
x2
).
Lemma
exist_ne
:
∀
n
x1
x2
,
x1
≡
{
n
}
≡
x2
→
∀
(
H1
:
P
x1
)
(
H2
:
P
x2
),
(
exist
P
x1
H1
)
≡
{
n
}
≡
(
exist
P
x2
H2
).
Proof
.
intros
n
??
Hx
??.
exact
Hx
.
Qed
.
Instance
sig_equiv
:
Equiv
(
sig
P
)
:
=
λ
x1
x2
,
`
x1
≡
`
x2
.
Instance
sig_dist
:
Dist
(
sig
P
)
:
=
λ
n
x1
x2
,
`
x1
≡
{
n
}
≡
`
x2
.
Lemma
exist_ne
n
a1
a2
(
H1
:
P
a1
)
(
H2
:
P
a2
)
:
a1
≡
{
n
}
≡
a2
→
a1
↾
H1
≡
{
n
}
≡
a2
↾
H2
.
Proof
.
done
.
Qed
.
Global
Instance
proj1_sig_ne
:
Proper
(
dist
n
==>
dist
n
)
(@
proj1_sig
_
P
).
Proof
.
intros
n
[
]
[]
?.
done
.
Qed
.
Proof
.
by
intros
n
[
a
Ha
]
[
b
Hb
]
?
.
Qed
.
Definition
sig_ofe_mixin
:
OfeMixin
(
sig
P
).
Proof
.
split
.
-
intros
x
y
.
unfold
dist
,
sig_dist
,
equiv
,
sig_equiv
.
destruct
x
,
y
.
apply
equiv_dist
.
-
unfold
dist
,
sig_dist
.
intros
n
.
split
;
[
intros
[]
|
intros
[]
[]
|
intros
[]
[]
[]]
;
simpl
;
try
done
.
intros
.
by
etrans
.
-
intros
n
[??]
[??].
unfold
dist
,
sig_dist
.
simpl
.
apply
dist_S
.
-
intros
[
a
?]
[
b
?].
rewrite
/
dist
/
sig_dist
/
equiv
/
sig_equiv
/=.
apply
equiv_dist
.
-
intros
n
.
rewrite
/
dist
/
sig_dist
.
split
;
[
intros
[]|
intros
[]
[]|
intros
[]
[]
[]]=>
//=
->
//.
-
intros
n
[
a
?]
[
b
?].
rewrite
/
dist
/
sig_dist
/=.
apply
dist_S
.
Qed
.
Canonical
Structure
sigC
:
ofeT
:
=
OfeT
(
sig
P
)
sig_ofe_mixin
.
...
...
@@ -1020,13 +1017,11 @@ Section sigma.
suddenly becomes explicit...? *)
Program
Definition
sig_compl
`
{
LimitPreserving
_
P
}
:
Compl
sigC
:
=
λ
c
,
exist
P
(
compl
(
chain_map
proj1_sig
c
))
_
.
Next
Obligation
.
intros
?
Hlim
c
.
apply
Hlim
.
move
=>
n
/=.
destruct
(
c
n
).
done
.
Qed
.
Program
Definition
sig_cofe
`
{
LimitPreserving
_
P
}
:
Cofe
sigC
:
=
Next
Obligation
.
intros
?
Hlim
c
.
apply
Hlim
=>
n
/=.
by
destruct
(
c
n
).
Qed
.
Program
Definition
sig_cofe
`
{
Cofe
A
,
!
LimitPreserving
P
}
:
Cofe
sigC
:
=
{|
compl
:
=
sig_compl
|}.
Next
Obligation
.
intros
?
Hlim
n
c
.
apply
(
conv_compl
n
(
chain_map
proj1_sig
c
)).
intros
?
?
n
c
.
apply
(
conv_compl
n
(
chain_map
proj1_sig
c
)).
Qed
.
Global
Instance
sig_timeless
(
x
:
sig
P
)
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment