Commit 1804f34f by Ralf Jung

### some comments wrt. the fully unbundled style

parent d2e07fb4
 ... ... @@ -17,7 +17,9 @@ Generalizable Variables T U V W. (** ** 1-Bounded bisected Ultra Metric type d_n(x,y) <-> |x - y| <= 1/2^n *) (** Metric on the [type] M with requirements. Note that this only covers bisected metric spaces. *) (** Metric on the [type] M with requirements. Note that this only covers bisected metric spaces. To fully follow the unbundled style, we'd have to factor out "dist" - but things already work pretty well this way. *) Class metric (T : Type) {eqT : Setoid T} := { dist : nat -> T -> T -> Prop; dist_morph n :> Proper (equiv ==> equiv ==> iff) (dist n); ... ... @@ -94,7 +96,7 @@ Qed. (** Cauchy chains of elements of a metric spaces. This is a very strong form of convergence, since we require than all elements after the n-th are closer than 2⁻ⁿ.*) Definition chain (T : Type) := nat -> T. Class cchain `{mT : metric T} (σ : chain T) := Class cchain `{mT : metric T} (σ : chain T): Prop := chain_cauchy : forall n i j {HLei : n <= i} {HLej : n <= j}, (σ i) = n = (σ j). Arguments cchain [T eqT mT] σ. ... ... @@ -124,6 +126,7 @@ Section Chains. End Chains. (* Again, this is not fully unbundled - "compl" is a computational component *) Class cmetric T `{mT : metric T} := { compl : forall σ {σc : cchain σ}, T; conv_cauchy : forall σ {σc : cchain σ}, mconverge σ (compl σ)}. ... ...
 ... ... @@ -15,7 +15,7 @@ Section Definitions. Class PCM_unit := pcm_unit : T. Class PCM_op := pcm_op : option T -> option T -> option T. Class PCM {TU : PCM_unit} {TOP : PCM_op} := Class PCM {TU : PCM_unit} {TOP : PCM_op}: Prop := mkPCM { pcm_op_assoc :> Associative pcm_op; pcm_op_comm :> Commutative pcm_op; ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!