Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
iris
Commits
1270ae08
Commit
1270ae08
authored
Sep 28, 2016
by
Robbert Krebbers
Browse files
Leibniz equality variants of the commute lemmas for big ops.
parent
61761380
Changes
1
Show whitespace changes
Inline
Side-by-side
algebra/cmra_big_op.v
View file @
1270ae08
...
@@ -427,3 +427,30 @@ Proof.
...
@@ -427,3 +427,30 @@ Proof.
-
by
rewrite
!
big_opS_insert
//
!
big_opS_empty
!
right_id
.
-
by
rewrite
!
big_opS_insert
//
!
big_opS_empty
!
right_id
.
-
by
rewrite
!
big_opS_insert
//
cmra_homomorphism
-
IH
//.
-
by
rewrite
!
big_opS_insert
//
cmra_homomorphism
-
IH
//.
Qed
.
Qed
.
Lemma
big_opL_commute_L
{
M1
M2
:
ucmraT
}
`
{!
LeibnizEquiv
M2
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
UCMRAHomomorphism
h
}
(
f
:
nat
→
A
→
M1
)
l
:
h
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
=
([
⋅
list
]
k
↦
x
∈
l
,
h
(
f
k
x
)).
Proof
.
unfold_leibniz
.
by
apply
big_opL_commute
.
Qed
.
Lemma
big_opL_commute1_L
{
M1
M2
:
ucmraT
}
`
{!
LeibnizEquiv
M2
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
CMRAHomomorphism
h
}
(
f
:
nat
→
A
→
M1
)
l
:
l
≠
[]
→
h
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
=
([
⋅
list
]
k
↦
x
∈
l
,
h
(
f
k
x
)).
Proof
.
unfold_leibniz
.
by
apply
big_opL_commute1
.
Qed
.
Lemma
big_opM_commute_L
{
M1
M2
:
ucmraT
}
`
{!
LeibnizEquiv
M2
,
Countable
K
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
UCMRAHomomorphism
h
}
(
f
:
K
→
A
→
M1
)
m
:
h
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
=
([
⋅
map
]
k
↦
x
∈
m
,
h
(
f
k
x
)).
Proof
.
unfold_leibniz
.
by
apply
big_opM_commute
.
Qed
.
Lemma
big_opM_commute1_L
{
M1
M2
:
ucmraT
}
`
{!
LeibnizEquiv
M2
,
Countable
K
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
CMRAHomomorphism
h
}
(
f
:
K
→
A
→
M1
)
m
:
m
≠
∅
→
h
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
=
([
⋅
map
]
k
↦
x
∈
m
,
h
(
f
k
x
)).
Proof
.
unfold_leibniz
.
by
apply
big_opM_commute1
.
Qed
.
Lemma
big_opS_commute_L
{
M1
M2
:
ucmraT
}
`
{!
LeibnizEquiv
M2
,
Countable
A
}
(
h
:
M1
→
M2
)
`
{!
UCMRAHomomorphism
h
}
(
f
:
A
→
M1
)
X
:
h
([
⋅
set
]
x
∈
X
,
f
x
)
=
([
⋅
set
]
x
∈
X
,
h
(
f
x
)).
Proof
.
unfold_leibniz
.
by
apply
big_opS_commute
.
Qed
.
Lemma
big_opS_commute1_L
{
M1
M2
:
ucmraT
}
`
{!
LeibnizEquiv
M2
,
Countable
A
}
(
h
:
M1
→
M2
)
`
{!
CMRAHomomorphism
h
}
(
f
:
A
→
M1
)
X
:
X
≠
∅
→
h
([
⋅
set
]
x
∈
X
,
f
x
)
=
([
⋅
set
]
x
∈
X
,
h
(
f
x
)).
Proof
.
intros
.
rewrite
<-
leibniz_equiv_iff
.
by
apply
big_opS_commute1
.
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment