ltac_tactics.v 89.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From iris.proofmode Require Import coq_tactics.
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
From iris.bi Require Export bi.
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

Declare Reduction env_cbv := cbv [
  option_bind
  beq ascii_beq string_beq positive_beq Pos.succ ident_beq
  env_lookup env_lookup_delete env_delete env_app env_replace env_dom
  env_intuitionistic env_spatial env_counter env_spatial_is_nil envs_dom
  envs_lookup envs_lookup_delete envs_delete envs_snoc envs_app
    envs_simple_replace envs_replace envs_split
    envs_clear_spatial envs_clear_persistent envs_incr_counter
    envs_split_go envs_split prop_of_env].
Ltac env_cbv :=
  match goal with |- ?u => let v := eval env_cbv in u in change v end.
Ltac env_reflexivity := env_cbv; exact eq_refl.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
  let Hhyps := eval env_cbv in (envs_dom Δ) in
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
  eval env_cbv in (envs_lookup H Δ).

Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
               [apply _ || fail "iStartProof: not a Bi entailment"
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
               [apply _ || fail "iStartProof: not a Bi entailment"
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
      | _ => iStartProof; eapply tac_fresh; first by (env_reflexivity)
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
    let n := eval env_cbv in (env_counter Δ) in
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
  eapply tac_eval_in with _ H _ _ _;
    [env_reflexivity || fail "iEval:" H "not found"
    |let x := fresh in intros x; t; unfold x; reflexivity
    |env_reflexivity
    |].

Tactic Notation "iSimpl" := iEval simpl.
Tactic Notation "iSimpl" "in" constr(H) := iEval simpl in H.

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

PMP told me (= Robbert) in person that this is not possible today, but may be
possible in Ltac2. *)

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
    [env_reflexivity || fail "iRename:" H1 "not found"
    |env_reflexivity || fail "iRename:" H2 "not fresh"|].

Local Inductive esel_pat :=
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ltac iElaborateSelPat pat :=
  let rec go pat Δ Hs :=
    lazymatch pat with
    | [] => eval cbv in Hs
    | SelPure :: ?pat => go pat Δ (ESelPure :: Hs)
    | SelPersistent :: ?pat =>
       let Hs' := eval env_cbv in (env_dom (env_intuitionistic Δ)) in
       let Δ' := eval env_cbv in (envs_clear_persistent Δ) in
       go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
    | SelSpatial :: ?pat =>
       let Hs' := eval env_cbv in (env_dom (env_spatial Δ)) in
       let Δ' := eval env_cbv in (envs_clear_spatial Δ) in
       go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
    | SelIdent ?H :: ?pat =>
       lazymatch eval env_cbv in (envs_lookup_delete false H Δ) with
       | Some (?p,_,?Δ') => go pat Δ' (ESelIdent p H :: Hs)
       | None => fail "iElaborateSelPat:" H "not found"
       end
    end in
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
    let pat := sel_pat.parse pat in go pat Δ (@nil esel_pat)
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
    [env_reflexivity || fail "iClear:" H "not found"
    |env_cbv; apply _ ||
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

Tactic Notation "iClear" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs => clear; go Hs
    | ESelIdent _ ?H :: ?Hs => iClearHyp H; go Hs
    end in
  let Hs := iElaborateSelPat Hs in iStartProof; go Hs.

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
    [env_reflexivity || fail "iExact:" H "not found"
    |apply _ ||
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
    |env_cbv; apply _ ||
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
     first [is_evar i; fail 1 | env_reflexivity]
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
     is_evar i; first [find Γp i P | find Γs i P]; env_reflexivity
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
     first [is_evar i; fail 1 | env_reflexivity]
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
     is_evar i; first [find Γp i P | find Γs i P]; env_reflexivity
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
          [env_reflexivity
          |apply Hass
          |env_cbv; apply _ ||
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
          [env_reflexivity
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

(** * Making hypotheses persistent or pure *)
Local Tactic Notation "iPersistent" constr(H) :=
  eapply tac_persistent with _ H _ _ _; (* (i:=H) *)
    [env_reflexivity || fail "iPersistent:" H "not found"
    |apply _ ||
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
     fail "iPersistent:" P "not persistent"
    |env_cbv; apply _ ||
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPersistent:" P "not affine and the goal not absorbing"
    |env_reflexivity|].

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
    [env_reflexivity || fail "iPure:" H "not found"
    |apply _ ||
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
    |env_cbv; apply _ ||
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
    [env_cbv; apply _ ||
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
    [env_reflexivity
    |apply _ ||
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
  lazy iota beta;
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
    [apply _ || fail "iFrame: cannot frame" φ
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
    [env_reflexivity || fail "iFrame:" H "not found"
    |apply _ ||
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

Local Ltac iFrameAnyPersistent :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

Tactic Notation "iFrame" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | SelPure :: ?Hs => iFrameAnyPure; go Hs
    | SelPersistent :: ?Hs => iFrameAnyPersistent; go Hs
    | SelSpatial :: ?Hs => iFrameAnySpatial; go Hs
    | SelIdent ?H :: ?Hs => iFrameHyp H; go Hs
    end
  in let Hs := sel_pat.parse Hs in go Hs.
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
  intros x ||
    (iStartProof;
     lazymatch goal with
     | |- envs_entails _ _ =>
       eapply tac_forall_intro;
       [apply _ ||
              let P := match goal with |- FromForall ?P _ => P end in
              fail "iIntro: cannot turn" P "into a universal quantifier"
       |lazy beta; intros x]
     end).

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
  [ (* (?Q → _) *)
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
      [apply _
      |env_cbv; apply _ ||
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
      |env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |apply _
      |]
  | (* (_ -∗ _) *)
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
      [apply _
      | env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
  [ (* (?P → _) *)
    eapply tac_impl_intro_persistent with _ H _ _ _; (* (i:=H) *)
      [apply _
      |apply _ ||
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
      |env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |]
  | (* (?P -∗ _) *)
    eapply tac_wand_intro_persistent with _ H _ _ _; (* (i:=H) *)
      [ apply _
      | apply _ ||
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
      |apply _ ||
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
      |env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "_" :=
  first
  [ (* (?Q → _) *)
    iStartProof; eapply tac_impl_intro_drop;
    [ apply _ | ]
  | (* (_ -∗ _) *)
    iStartProof; eapply tac_wand_intro_drop;
      [ apply _
      | apply _ ||
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
      |]
  | (* (∀ _, _) *) iIntro (_)
  | fail 1 "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

(** * Specialize *)
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  let rec go xs :=
    lazymatch xs with
    | hnil => idtac
    | hcons ?x ?xs =>
       notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H "not found"
         |iSolveTC ||
          let P := match goal with |- IntoForall ?P _ => P end in
          fail "iSpecialize: cannot instantiate" P "with" x
         |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
          | |-  _ : ?A, _ =>
            notypeclasses refine (@ex_intro A _ x (conj _ _))
          end; [shelve..|env_reflexivity|go xs]]
    end in
  go xs.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
  let rec go H1 pats :=
    lazymatch pats with
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
       go H1 pats
    | SIdent ?H2 :: ?pats =>
       notypeclasses refine (tac_specialize _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H2 "not found"
         |env_reflexivity || fail "iSpecialize:" H1 "not found"
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
         |env_reflexivity|go H1 pats]
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
         |env_reflexivity
         |solve_done d (*goal*)
         |go H1 pats]
    | SGoal (SpecGoal GPersistent false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
         |env_reflexivity
         |iFrame Hs_frame; solve_done d (*goal*)
         |go H1 pats]
    | SGoal (SpecGoal GPersistent _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for persistent premise"
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |lazymatch m with
          | GSpatial => notypeclasses refine (add_modal_id _ _)
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |env_reflexivity ||
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
         |go H1 pats]
    | SAutoFrame GPersistent :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |env_reflexivity
         |solve [iFrame "∗ #"]
         |go H1 pats]
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |lazymatch m with
          | GSpatial => notypeclasses refine (add_modal_id _ _)
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
         |exact eq_refl]; iIntro H1; go H1 pats
    end in let pats := spec_pat.parse pat in go H pats.

(* The argument [p] denotes whether the conclusion of the specialized term is
persistent. If so, one can use all spatial hypotheses for both proving the
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
  let p := intro_pat_persistent p in
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
  lazymatch type of H with
  | ident =>
    (* The lemma [tac_specialize_persistent_helper] allows one to use all
    spatial hypotheses for both proving the premises of the lemma we
    specialize as well as those of the remaining goal. We can only use it when
    the result of the specialization is persistent, and no modality is
    eliminated. As an optimization, we do not use this when only universal
    quantifiers are instantiated. *)
    let pat := spec_pat.parse pat in
    lazymatch eval compute in
      (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
    | true =>
       (* FIXME: do something reasonable when the BI is not affine *)
       notypeclasses refine (tac_specialize_persistent_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H "not found"
         |iSpecializePat H pat;
           [..
           |refine (tac_specialize_persistent_helper_done _ H _ _ _);
            env_reflexivity]
         |iSolveTC ||
          let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not persistent"
         |env_cbv; iSolveTC ||
          let Q := match goal with |- TCAnd _ (Affine ?Q) => Q end in
          fail "iSpecialize:" Q "not affine"
         |env_reflexivity
         |(* goal *)]
    | false => iSpecializePat H pat
    end
  | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
  end].

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

(** * Pose proof *)
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Tactic Notation "iIntoEmpValid" open_constr(t) :=
  let rec go t :=
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
          [iSolveTC || fail "iPoseProof: not a BI assertion"
          |exact t]]
  with go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|go uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; go (t e')
    end
  in
  go t.

(* The tactic [tac] is called with a temporary fresh name [H]. The argument
[lazy_tc] denotes whether type class inference on the premises of [lem] should
be performed before (if false) or after (if true) [tac H] is called.

The tactic [iApply] uses laxy type class inference, so that evars can first be
instantiated by matching with the goal, whereas [iDestruct] does not, because
eliminations may not be performed when type classes have not been resolved.
*)
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
    | ITrm ?t ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
    | _ => idtac
    end in
  let go goal_tac :=
    lazymatch type of t with
    | ident =>
       eapply tac_pose_proof_hyp with _ _ t _ Htmp _;
         [env_reflexivity || fail "iPoseProof:" t "not found"
         |env_reflexivity || fail "iPoseProof:" Htmp "not fresh"
         |goal_tac ()]
    | _ =>
       eapply tac_pose_proof with _ Htmp _; (* (j:=H) *)
         [iIntoEmpValid t
         |env_reflexivity || fail "iPoseProof:" Htmp "not fresh"
         |goal_tac ()]
    end;
    try iSolveTC in
  lazymatch eval compute in lazy_tc with
  | true => go ltac:(fun _ => spec_tac (); last (tac Htmp))
  | false => go spec_tac; last (tac Htmp)
  end.

(** * Apply *)
Tactic Notation "iApplyHyp" constr(H) :=
  let rec go H := first
    [eapply tac_apply with _ H _ _ _;
      [env_reflexivity
      |iSolveTC
      |lazy beta (* reduce betas created by instantiation *)]
    |iSpecializePat H "[]"; last go H] in
  iExact H ||
  go H ||
  lazymatch iTypeOf H with
  | Some (_,?Q) => fail "iApply: cannot apply" Q
  end.

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
    | ESelIdent _ ?H :: ?Hs =>
       eapply tac_revert with _ H _ _; (* (i:=H2) *)
         [env_reflexivity || fail "iRevert:" H "not found"
         |env_cbv; go Hs]
    end in
  let Hs := iElaborateSelPat Hs in iStartProof; go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
    |].
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
    |].

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
    [env_reflexivity || fail "iOrDestruct:" H "not found"
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
    |env_reflexivity || fail "iOrDestruct:" H1 "not fresh"
    |env_reflexivity || fail "iOrDestruct:" H2 "not fresh"
    | |].

(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
  iStartProof;
  eapply tac_and_split;
    [iSolveTC ||
     let P := match goal with |- FromAnd ?P _ _ => P end in
     fail "iSplit:" P "not a conjunction"| |].

Tactic Notation "iSplitL" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Left Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitL:" P "not a separating conjunction"
    |env_reflexivity ||
     let Hs := iMissingHyps Hs in
     fail "iSplitL: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitR" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Right Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitR:" P "not a separating conjunction"
    |env_reflexivity ||
     let Hs := iMissingHyps Hs in
     fail "iSplitR: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".

Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
    [env_reflexivity || fail "iAndDestruct:" H "not found"
    |env_cbv; iSolveTC ||
     let P :=
       lazymatch goal with
       | |- IntoSep ?P _ _ => P
       | |- IntoAnd _ ?P _ _ => P
       end in
     fail "iAndDestruct: cannot destruct" P
    |env_reflexivity || fail "iAndDestruct:" H1 "or" H2 " not fresh"|].

Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(d) constr(H') :=
  eapply tac_and_destruct_choice with _ H _ d H' _ _ _;
    [env_reflexivity || fail "iAndDestructChoice:" H "not found"
    |env_cbv; iSolveTC ||
     let P := match goal with |- TCOr (IntoAnd _ ?P _ _) _ => P end in
     fail "iAndDestructChoice: cannot destruct" P
    |env_reflexivity || fail "iAndDestructChoice:" H' " not fresh"|].

(** * Combinining hypotheses *)
Tactic Notation "iCombine" constr(Hs) "as" constr(H) :=
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_combine with _ _ Hs _ _ H _;
    [env_reflexivity ||
     let Hs := iMissingHyps Hs in
     fail "iCombine: hypotheses" Hs "not found"
    |iSolveTC
    |env_reflexivity || fail "iCombine:" H "not fresh"|].

Tactic Notation "iCombine" constr(H1) constr(H2) "as" constr(H) :=
  iCombine [H1;H2] as H.

(** * Existential *)
Tactic Notation "iExists" uconstr(x1) :=
  iStartProof;
  eapply tac_exist;
    [iSolveTC ||
     let P := match goal with |- FromExist ?P _ => P end in
     fail "iExists:" P "not an existential"
    |cbv beta; eexists x1].

Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
  iExists x1; iExists x2.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
  iExists x1; iExists x2, x3.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) :=
  iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) :=
  iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
  iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
    uconstr(x8) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.

Local Tactic Notation "iExistDestruct" constr(H)
    "as" simple_intropattern(x) constr(Hx) :=
  eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
    [env_reflexivity || fail "iExistDestruct:" H "not found"
    |iSolveTC ||
     let P := match goal with |- IntoExist ?P _ => P end in
     fail "iExistDestruct: cannot destruct" P|];
  let y := fresh in
  intros y; eexists; split;
    [env_reflexivity || fail "iExistDestruct:" Hx "not fresh"
    |revert y; intros x].

(** * Modality introduction *)
Tactic Notation "iModIntro" uconstr(sel) :=
  iStartProof;
  notypeclasses refine (tac_modal_intro _ sel _ _ _ _ _ _ _ _ _ _ _ _ _);
    [iSolveTC ||
     fail "iModIntro: the goal is not a modality"
    |iSolveTC ||
     let s := lazymatch goal with |- IntoModalPersistentEnv _ _ _ ?s => s end in
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: persistent context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: persistent context is non-empty"
     end
    |iSolveTC ||
     let s := lazymatch goal with |- IntoModalPersistentEnv _ _ _ ?s => s end in
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: spatial context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: spatial context is non-empty"
     end