ofe.v 36.3 KB
Newer Older
1
From iris.algebra Require Export base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2

3
(** This files defines (a shallow embedding of) the category of OFEs:
4
5
6
7
8
9
10
11
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
14
Instance: Params (@dist) 3.
15
16
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
17
Hint Extern 0 (_ {_} _) => reflexivity.
18
Hint Extern 0 (_ {_} _) => symmetry; assumption.
19
20
21

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
22
  | _ => progress simplify_eq/=
23
24
25
26
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
27
  repeat match goal with
28
  | _ => progress simplify_eq/=
29
30
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
31
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
32

33
Record OfeMixin A `{Equiv A, Dist A} := {
34
  mixin_equiv_dist x y : x  y   n, x {n} y;
35
  mixin_dist_equivalence n : Equivalence (dist n);
36
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
39
}.

(** Bundeled version *)
40
41
42
43
44
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
45
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
46
}.
47
48
49
50
51
52
53
54
55
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
56
57

(** Lifting properties from the mixin *)
58
59
Section ofe_mixin.
  Context {A : ofeT}.
60
  Implicit Types x y : A.
61
  Lemma equiv_dist x y : x  y   n, x {n} y.
62
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
63
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
64
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
65
  Lemma dist_S n x y : x {S n} y  x {n} y.
66
67
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
68

Robbert Krebbers's avatar
Robbert Krebbers committed
69
70
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

71
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
72
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
73
   more sense. *)
74
75
Class Timeless `{Equiv A, Dist A} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.
76
77
78
79
80
81
82
83
84
85
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

86
87
88
89
90
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

91
92
93
94
95
96
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
97

Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
(** General properties *)
Section cofe.
100
  Context {A : ofeT}.
101
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
103
104
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
105
106
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
107
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
  Qed.
109
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
112
113
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
114
  Qed.
115
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
116
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
120
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Proof. induction 2; eauto using dist_S. Qed.
123
124
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
125
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
128
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
129
130
131
132
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  Qed.
135

136
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
137
138
139
140
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
141
142
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
144
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
146
End cofe.

147
(** Contractive functions *)
148
149
150
151
152
153
154
155
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
156

157
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
158
159
Proof. by intros n y1 y2. Qed.

160
161
162
163
164
Section contractive.
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
165
  Proof. by apply (_ : Contractive f). Qed.
166
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
167
  Proof. intros. by apply (_ : Contractive f). Qed.
168
169
170
171
172
173
174

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
  | |- dist_later ?n ?x ?y => destruct n as [|n]; [done|change (x {n} y)]
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
189

Robbert Krebbers's avatar
Robbert Krebbers committed
190
(** Fixpoint *)
191
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
192
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
Next Obligation.
194
  intros A ? f ? n.
195
  induction n as [|n IH]=> -[|i] //= ?; try omega.
196
197
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
Qed.
199

200
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
201
  `{!Contractive f} : A := compl (fixpoint_chain f).
202
Definition fixpoint_aux : { x | x = @fixpoint_def }. by eexists. Qed.
203
Definition fixpoint {A AC AiH} f {Hf} := proj1_sig fixpoint_aux A AC AiH f Hf.
204
Definition fixpoint_eq : @fixpoint = @fixpoint_def := proj2_sig fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
206

Section fixpoint.
207
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
208

209
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  Proof.
211
212
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
213
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  Qed.
215
216
217

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
218
219
220
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
221
222
  Qed.

223
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
224
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
225
  Proof.
226
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
227
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
228
229
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
  Qed.
231
232
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
234
235
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
(** Mutual fixpoints *)
Section fixpoint2.
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
End fixpoint2.

Section fixpoint2_ne.
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
End fixpoint2_ne.

315
(** Function space *)
316
(* We make [ofe_fun] a definition so that we can register it as a canonical
317
structure. *)
318
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
319

320
321
322
323
324
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
325
326
327
328
329
330
331
332
333
334
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
335
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
336

337
338
339
340
341
342
343
344
345
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
346
Notation "A -c> B" :=
347
348
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
349
350
  Inhabited (A -c> B) := populate (λ _, inhabitant).

351
(** Non-expansive function space *)
352
353
354
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
355
356
}.
Arguments CofeMor {_ _} _ {_}.
357
358
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
359

360
361
362
363
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

364
365
366
367
368
369
370
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
371
372
  Proof.
    split.
373
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
374
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
375
    - intros n; split.
376
377
      + by intros f x.
      + by intros f g ? x.
378
      + by intros f g h ?? x; trans (g x).
379
    - by intros n f g ? x; apply dist_S.
380
  Qed.
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
398

399
400
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
401
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
402
403
404
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
405
  Proof. done. Qed.
406
End ofe_mor.
407

408
Arguments ofe_morC : clear implicits.
409
Notation "A -n> B" :=
410
411
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
412
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
413

414
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
415
416
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
417
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
418
Instance: Params (@cconst) 2.
419

Robbert Krebbers's avatar
Robbert Krebbers committed
420
421
422
423
424
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
425
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427

Ralf Jung's avatar
Ralf Jung committed
428
(* Function space maps *)
429
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
430
  (h : A -n> B) : A' -n> B' := g  h  f.
431
432
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
433
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
434

435
436
437
438
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
439
Proof.
440
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
441
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
442
443
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
444
(** unit *)
445
446
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
447
  Definition unit_ofe_mixin : OfeMixin unit.
448
  Proof. by repeat split; try exists 0. Qed.
449
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
450

451
452
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
454

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
  Proof. done. Qed.
456
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
458

(** Product *)
459
Section product.
460
  Context {A B : ofeT}.
461
462
463
464
465
466

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
467
  Definition prod_ofe_mixin : OfeMixin (A * B).
468
469
  Proof.
    split.
470
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
471
      rewrite !equiv_dist; naive_solver.
472
473
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
474
  Qed.
475
476
477
478
479
480
481
482
483
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

484
485
486
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
487
488
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
489
490
491
492
493
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

494
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
495
496
497
498
499
500
501
502
503
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

504
505
(** Functors *)
Structure cFunctor := CFunctor {
506
  cFunctor_car : ofeT  ofeT  ofeT;
507
508
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
509
510
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
511
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
512
513
514
515
516
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
517
Existing Instance cFunctor_ne.
518
519
Instance: Params (@cFunctor_map) 5.

520
521
522
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

523
524
525
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

526
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
527
528
Coercion cFunctor_diag : cFunctor >-> Funclass.

529
Program Definition constCF (B : ofeT) : cFunctor :=
530
531
532
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

533
Instance constCF_contractive B : cFunctorContractive (constCF B).
534
Proof. rewrite /cFunctorContractive; apply _. Qed.
535
536
537
538
539

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.

540
541
542
543
544
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
545
546
547
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
548
549
550
551
552
553
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.

554
555
556
557
558
559
560
561
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

562
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
563
564
565
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

566
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
567
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
568
569
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
570
571
Proof. intros f f' Hf g x. apply Hf. Qed.

572
573
574
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
575
576
|}.
Next Obligation.
577
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
578
579
580
581
582
583
584
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.

585
586
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
587
588
Proof.
  intros ?? A1 A2 B1 B2 n ???;
589
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
590
591
Qed.

592
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
593
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
594
  cFunctor_map A1 A2 B1 B2 fg :=
595
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
596
|}.
597
598
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
599
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
600
Qed.
Ralf Jung's avatar
Ralf Jung committed
601
Next Obligation.
602
603
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
604
605
Qed.
Next Obligation.
606
607
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
608
609
Qed.

610
Instance ofe_morCF_contractive F1 F2 :
611
  cFunctorContractive F1  cFunctorContractive F2 
612
  cFunctorContractive (ofe_morCF F1 F2).
613
614
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
615
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
616
617
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
618
619
(** Sum *)
Section sum.
620
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
622
623
624
625
626
627

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

628
629
630
631
632
633
634
635
636
637
638
639
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
640
641
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
642
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
643
644
645
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

646
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
647
648
649
650
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
651
652
653
654
655
656
657
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
658
659
660
661
662
663
664
665
666
667
668
669
670
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

671
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

705
706
707
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
708

709
  Instance discrete_dist : Dist A := λ n x y, x  y.
710
  Definition discrete_ofe_mixin : OfeMixin A.
711
712
  Proof.
    split.
713
714
715
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
716
  Qed.
717

718
719
720
721
722
  Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) :=
    { compl c := c 0 }.
  Next Obligation.
    intros n c. rewrite /compl /=;
    symmetry; apply (chain_cauchy c 0 n). omega.
723
724
725
  Qed.
End discrete_cofe.

726
727
Notation discreteC A := (OfeT A discrete_ofe_mixin).
Notation leibnizC A := (OfeT A (@discrete_ofe_mixin _ equivL _)).
728
729
730
731
732
733

Instance discrete_discrete_cofe `{Equiv A, @Equivalence A ()} :
  Discrete (discreteC A).
Proof. by intros x y. Qed.
Instance leibnizC_leibniz A : LeibnizEquiv (leibnizC A).
Proof. by intros x y. Qed.
734

Robbert Krebbers's avatar
Robbert Krebbers committed
735
Canonical Structure boolC := leibnizC bool.
736
737
738
739
Canonical Structure natC := leibnizC nat.
Canonical Structure positiveC := leibnizC positive.
Canonical Structure NC := leibnizC N.
Canonical Structure ZC := leibnizC Z.
740

741
742
(* Option *)
Section option.
743
  Context {A : ofeT}.
744

745
  Instance option_dist : Dist (option A) := λ n, option_Forall2 (dist n).
746
  Lemma dist_option_Forall2 n mx my : mx {n} my  option_Forall2 (dist n) mx my.
747
  Proof. done. Qed.
748

749
  Definition option_ofe_mixin : OfeMixin (option A).
750
751
752
753
754
  Proof.
    split.
    - intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
      intros Hxy; destruct (Hxy 0); constructor; apply equiv_dist.
      by intros n; feed inversion (Hxy n).
755
    - apply _.
756
757
    - destruct 1; constructor; by apply dist_S.
  Qed.
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
  Canonical Structure optionC := OfeT (option A) option_ofe_mixin.

  Program Definition option_chain (c : chain optionC) (x : A) : chain A :=
    {| chain_car n := from_option id x (c n) |}.
  Next Obligation. intros c x n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
  Definition option_compl `{Cofe A} : Compl optionC := λ c,
    match c 0 with Some x => Some (compl (option_chain c x)) | None => None end.
  Global Program Instance option_cofe `{Cofe A} : Cofe optionC :=
    { compl := option_compl }.
  Next Obligation.
    intros ? n c; rewrite /compl /option_compl.
    feed inversion (chain_cauchy c 0 n); auto with lia; [].
    constructor. rewrite (conv_compl n (option_chain c _)) /=.
    destruct (c n); naive_solver.
  Qed.

774
775
776
777
778
779
780
781
782
  Global Instance option_discrete : Discrete A  Discrete optionC.
  Proof. destruct 2; constructor; by apply (timeless _). Qed.

  Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A).
  Proof. by constructor. Qed.
  Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A).
  Proof. destruct 1; split; eauto. Qed.
  Global Instance Some_dist_inj : Inj (dist n) (dist n) (@Some A).
  Proof. by inversion_clear 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
783
784
785
  Global Instance from_option_ne {B} (R : relation B) (f : A  B) n :
    Proper (dist n ==> R) f  Proper (R ==> dist n ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
786
787
788
789
790

  Global Instance None_timeless : Timeless (@None A).
  Proof. inversion_clear 1; constructor. Qed.
  Global Instance Some_timeless x : Timeless x  Timeless (Some x).
  Proof. by intros ?; inversion_clear 1; constructor; apply timeless. Qed.
791
792
793
794
795
796
797
798
799
800
801
802
803

  Lemma dist_None n mx : mx {n} None  mx = None.
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
  Lemma dist_Some_inv_l n mx my x :
    mx {n} my  mx = Some x   y, my = Some y  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_r n mx my y :
    mx {n} my  my = Some y   x, mx = Some x  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_l' n my x : Some x {n} my   x', Some x' = my  x {n} x'.
  Proof. intros ?%(dist_Some_inv_l _ _ _ x); naive_solver. Qed.
  Lemma dist_Some_inv_r' n mx y : mx {n} Some y   y', mx = Some y'  y {n} y'.
  Proof. intros ?%(dist_Some_inv_r _ _ _ y); naive_solver. Qed.
804
805
End option.

806
Typeclasses Opaque option_dist.
807
808
Arguments optionC : clear implicits.

809
Instance option_fmap_ne {A B : ofeT} n:
Robbert Krebbers's avatar
Robbert Krebbers committed
810
811
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@fmap option _ A B).
Proof. intros f f' Hf ?? []; constructor; auto. Qed.
812
813
814
815
816
817
818
819
820
821
822
823
824
825
Definition optionC_map {A B} (f : A -n> B) : optionC A -n> optionC B :=
  CofeMor (fmap f : optionC A  optionC B).
Instance optionC_map_ne A B n : Proper (dist n ==> dist n) (@optionC_map A B).
Proof. by intros f f' Hf []; constructor; apply Hf. Qed.

Program Definition optionCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := optionC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := optionC_map (cFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(option_fmap_id x).
826
  apply option_fmap_equiv_ext=>y; apply cFunctor_id.
827
828
829
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -option_fmap_compose.
830
  apply option_fmap_equiv_ext=>y; apply cFunctor_compose.
831
832
833
834
835
836
837
838
Qed.

Instance optionCF_contractive F :
  cFunctorContractive F  cFunctorContractive (optionCF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, cFunctor_contractive.
Qed.

839
(** Later *)
840
Inductive later (A : Type) : Type := Next { later_car : A }.
841
Add Printing Constructor later.
842
Arguments Next {_} _.
843
Arguments later_car {_} _.
844

845
Section later.
846
  Context {A : ofeT}.
847
848
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,