auth.v 11.7 KB
Newer Older
1 2
From iris.algebra Require Export excl local_updates.
From iris.algebra Require Import upred updates.
3
From iris.proofmode Require Import class_instances.
4
Local Arguments valid _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
5
Local Arguments validN _ _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
6

7
Record auth (A : Type) := Auth { authoritative : excl' A; auth_own : A }.
8
Add Printing Constructor auth.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Arguments Auth {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Arguments authoritative {_} _.
11
Arguments auth_own {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
12 13
Notation "◯ a" := (Auth None a) (at level 20).
Notation "● a" := (Auth (Excl' a) ) (at level 20).
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15
(* COFE *)
16 17
Section cofe.
Context {A : cofeT}.
18
Implicit Types a : excl' A.
19
Implicit Types b : A.
20
Implicit Types x y : auth A.
21 22

Instance auth_equiv : Equiv (auth A) := λ x y,
23
  authoritative x  authoritative y  auth_own x  auth_own y.
24
Instance auth_dist : Dist (auth A) := λ n x y,
25
  authoritative x {n} authoritative y  auth_own x {n} auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
26

27
Global Instance Auth_ne : Proper (dist n ==> dist n ==> dist n) (@Auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
28
Proof. by split. Qed.
29 30
Global Instance Auth_proper : Proper (() ==> () ==> ()) (@Auth A).
Proof. by split. Qed.
31
Global Instance authoritative_ne: Proper (dist n ==> dist n) (@authoritative A).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Proof. by destruct 1. Qed.
33 34
Global Instance authoritative_proper : Proper (() ==> ()) (@authoritative A).
Proof. by destruct 1. Qed.
35
Global Instance own_ne : Proper (dist n ==> dist n) (@auth_own A).
Robbert Krebbers's avatar
Robbert Krebbers committed
36
Proof. by destruct 1. Qed.
37
Global Instance own_proper : Proper (() ==> ()) (@auth_own A).
38
Proof. by destruct 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
39

40
Instance auth_compl : Compl (auth A) := λ c,
41
  Auth (compl (chain_map authoritative c)) (compl (chain_map auth_own c)).
42
Definition auth_cofe_mixin : CofeMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44
Proof.
  split.
45
  - intros x y; unfold dist, auth_dist, equiv, auth_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
    rewrite !equiv_dist; naive_solver.
47
  - intros n; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
    + by intros ?; split.
    + by intros ?? [??]; split; symmetry.
50
    + intros ??? [??] [??]; split; etrans; eauto.
51
  - by intros ? [??] [??] [??]; split; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
  - intros n c; split. apply (conv_compl n (chain_map authoritative c)).
53
    apply (conv_compl n (chain_map auth_own c)).
Robbert Krebbers's avatar
Robbert Krebbers committed
54
Qed.
55
Canonical Structure authC := CofeT (auth A) auth_cofe_mixin.
56 57 58 59 60 61

Global Instance Auth_timeless a b :
  Timeless a  Timeless b  Timeless (Auth a b).
Proof. by intros ?? [??] [??]; split; apply: timeless. Qed.
Global Instance auth_discrete : Discrete A  Discrete authC.
Proof. intros ? [??]; apply _. Qed.
62
Global Instance auth_leibniz : LeibnizEquiv A  LeibnizEquiv (auth A).
63
Proof. by intros ? [??] [??] [??]; f_equal/=; apply leibniz_equiv. Qed.
64 65 66
End cofe.

Arguments authC : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68

(* CMRA *)
69
Section cmra.
70
Context {A : ucmraT}.
71 72
Implicit Types a b : A.
Implicit Types x y : auth A.
73

74 75
Instance auth_valid : Valid (auth A) := λ x,
  match authoritative x with
76 77
  | Excl' a => ( n, auth_own x {n} a)   a
  | None =>  auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
78
  | ExclBot' => False
79 80
  end.
Global Arguments auth_valid !_ /.
81
Instance auth_validN : ValidN (auth A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
82
  match authoritative x with
83 84
  | Excl' a => auth_own x {n} a  {n} a
  | None => {n} auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  | ExclBot' => False
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  end.
87
Global Arguments auth_validN _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Instance auth_pcore : PCore (auth A) := λ x,
89
  Some (Auth (core (authoritative x)) (core (auth_own x))).
90
Instance auth_op : Op (auth A) := λ x y,
91
  Auth (authoritative x  authoritative y) (auth_own x  auth_own y).
92

93
Lemma auth_included (x y : auth A) :
94
  x  y  authoritative x  authoritative y  auth_own x  auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96 97 98
Proof.
  split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
  intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
99 100

Lemma authoritative_validN n x : {n} x  {n} authoritative x.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Proof. by destruct x as [[[]|]]. Qed.
102
Lemma auth_own_validN n x : {n} x  {n} auth_own x.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Proof. destruct x as [[[]|]]; naive_solver eauto using cmra_validN_includedN. Qed.
104

105 106
Lemma auth_valid_discrete `{CMRADiscrete A} x :
   x  match authoritative x with
107 108
        | Excl' a => auth_own x  a   a
        | None =>  auth_own x
109 110 111 112 113 114
        | ExclBot' => False
        end.
Proof.
  destruct x as [[[?|]|] ?]; simpl; try done.
  setoid_rewrite <-cmra_discrete_included_iff; naive_solver eauto using 0.
Qed.
115 116
Lemma auth_valid_discrete_2 `{CMRADiscrete A} a b :  ( a   b)  b  a   a.
Proof. by rewrite auth_valid_discrete /= left_id. Qed.
117

118 119 120 121 122 123 124 125
Lemma authoritative_valid  x :  x   authoritative x.
Proof. by destruct x as [[[]|]]. Qed.
Lemma auth_own_valid `{CMRADiscrete A} x :  x   auth_own x.
Proof.
  rewrite auth_valid_discrete.
  destruct x as [[[]|]]; naive_solver eauto using cmra_valid_included.
Qed.

126
Lemma auth_cmra_mixin : CMRAMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
127
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129
  apply cmra_total_mixin.
  - eauto.
130 131
  - by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
  - by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134
  - intros n [x a] [y b] [Hx Ha]; simpl in *.
    destruct Hx as [?? Hx|]; first destruct Hx; intros ?; cofe_subst; auto.
  - intros [[[?|]|] ?]; rewrite /= ?cmra_included_includedN ?cmra_valid_validN;
135
      naive_solver eauto using O.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
  - intros n [[[]|] ?] ?; naive_solver eauto using cmra_includedN_S, cmra_validN_S.
137 138
  - by split; simpl; rewrite assoc.
  - by split; simpl; rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
139 140
  - by split; simpl; rewrite ?cmra_core_l.
  - by split; simpl; rewrite ?cmra_core_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
  - intros ??; rewrite! auth_included; intros [??].
142
    by split; simpl; apply cmra_core_mono.
143
  - assert ( n (a b1 b2 : A), b1  b2 {n} a  b1 {n} a).
144
    { intros n a b1 b2 <-; apply cmra_includedN_l. }
Robbert Krebbers's avatar
Robbert Krebbers committed
145
   intros n [[[a1|]|] b1] [[[a2|]|] b2];
146
     naive_solver eauto using cmra_validN_op_l, cmra_validN_includedN.
147 148
  - intros n x y1 y2 ? [??]; simpl in *.
    destruct (cmra_extend n (authoritative x) (authoritative y1)
149
      (authoritative y2)) as (ea1&ea2&?&?&?); auto using authoritative_validN.
150
    destruct (cmra_extend n (auth_own x) (auth_own y1) (auth_own y2))
151 152
      as (b1&b2&?&?&?); auto using auth_own_validN.
    by exists (Auth ea1 b1), (Auth ea2 b2).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155
Canonical Structure authR := CMRAT (auth A) auth_cofe_mixin auth_cmra_mixin.

156
Global Instance auth_cmra_discrete : CMRADiscrete A  CMRADiscrete authR.
157 158
Proof.
  split; first apply _.
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  intros [[[?|]|] ?]; rewrite /= /cmra_valid /cmra_validN /=; auto.
160 161 162 163
  - setoid_rewrite <-cmra_discrete_included_iff.
    rewrite -cmra_discrete_valid_iff. tauto.
  - by rewrite -cmra_discrete_valid_iff.
Qed.
164

165 166 167 168 169 170
Instance auth_empty : Empty (auth A) := Auth  .
Lemma auth_ucmra_mixin : UCMRAMixin (auth A).
Proof.
  split; simpl.
  - apply (@ucmra_unit_valid A).
  - by intros x; constructor; rewrite /= left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  - do 2 constructor; simpl; apply (persistent_core _).
172 173 174 175
Qed.
Canonical Structure authUR :=
  UCMRAT (auth A) auth_cofe_mixin auth_cmra_mixin auth_ucmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
176 177 178
Global Instance auth_frag_persistent a : Persistent a  Persistent ( a).
Proof. do 2 constructor; simpl; auto. by apply persistent_core. Qed.

179 180
(** Internalized properties *)
Lemma auth_equivI {M} (x y : auth A) :
181
  x  y  (authoritative x  authoritative y  auth_own x  auth_own y : uPred M).
182
Proof. by uPred.unseal. Qed.
183
Lemma auth_validI {M} (x : auth A) :
184
   x  (match authoritative x with
185 186
          | Excl' a => ( b, a  auth_own x  b)   a
          | None =>  auth_own x
187 188
          | ExclBot' => False
          end : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
189
Proof. uPred.unseal. by destruct x as [[[]|]]. Qed.
190

191
Lemma auth_frag_op a b :  (a  b)   a   b.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
Proof. done. Qed.
193 194
Lemma auth_frag_mono a b : a  b   a   b.
Proof. intros [c ->]. rewrite auth_frag_op. apply cmra_included_l. Qed.
195
Global Instance auth_frag_cmra_homomorphism : UCMRAHomomorphism (Auth None).
196 197 198 199
Proof. done. Qed.

Lemma auth_both_op a b : Auth (Excl' a) b   a   b.
Proof. by rewrite /op /auth_op /= left_id. Qed.
200 201
Lemma auth_auth_valid a :  a   ( a).
Proof. intros; split; simpl; auto using ucmra_unit_leastN. Qed.
202

203 204
Lemma auth_update a b a' b' :
  (a,b) ~l~> (a',b')   a   b ~~>  a'   b'.
205
Proof.
206 207 208 209 210
  intros Hup; apply cmra_total_update.
  move=> n [[[?|]|] bf1] // [[bf2 Ha] ?]; do 2 red; simpl in *.
  move: Ha; rewrite !left_id -assoc=> Ha.
  destruct (Hup n (Some (bf1  bf2))); auto.
  split; last done. exists bf2. by rewrite -assoc.
Ralf Jung's avatar
Ralf Jung committed
211
Qed.
212

213 214 215 216
Lemma auth_update_alloc a a' b' : (a,) ~l~> (a',b')   a ~~>  a'   b'.
Proof. intros. rewrite -(right_id _ _ ( a)). by apply auth_update. Qed.
Lemma auth_update_dealloc a b a' : (a,b) ~l~> (a',)   a   b ~~>  a'.
Proof. intros. rewrite -(right_id _ _ ( a')). by apply auth_update. Qed.
217 218
End cmra.

219
Arguments authR : clear implicits.
220
Arguments authUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
221

222 223 224 225 226 227 228 229
(* Proof mode class instances *)
Instance from_op_auth_frag {A : ucmraT} (a b1 b2 : A) :
  FromOp a b1 b2  FromOp ( a) ( b1) ( b2).
Proof. done. Qed.
Instance into_op_auth_frag {A : ucmraT} (a b1 b2 : A) :
  IntoOp a b1 b2  IntoOp ( a) ( b1) ( b2).
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
230
(* Functor *)
231
Definition auth_map {A B} (f : A  B) (x : auth A) : auth B :=
232
  Auth (excl_map f <$> authoritative x) (f (auth_own x)).
233
Lemma auth_map_id {A} (x : auth A) : auth_map id x = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
Proof. by destruct x as [[[]|]]. Qed.
235 236
Lemma auth_map_compose {A B C} (f : A  B) (g : B  C) (x : auth A) :
  auth_map (g  f) x = auth_map g (auth_map f x).
Robbert Krebbers's avatar
Robbert Krebbers committed
237
Proof. by destruct x as [[[]|]]. Qed.
238 239
Lemma auth_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  auth_map f x  auth_map g x.
Robbert Krebbers's avatar
Robbert Krebbers committed
240 241 242 243 244
Proof.
  constructor; simpl; auto.
  apply option_fmap_setoid_ext=> a; by apply excl_map_ext.
Qed.
Instance auth_map_ne {A B : cofeT} n :
245
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@auth_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
246
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248
  intros f g Hf [??] [??] [??]; split; simpl in *; [|by apply Hf].
  apply option_fmap_ne; [|done]=> x y ?; by apply excl_map_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
Qed.
250
Instance auth_map_cmra_monotone {A B : ucmraT} (f : A  B) :
251
  CMRAMonotone f  CMRAMonotone (auth_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
252
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
  split; try apply _.
Robbert Krebbers's avatar
Robbert Krebbers committed
254
  - intros n [[[a|]|] b]; rewrite /= /cmra_validN /=; try
255
      naive_solver eauto using cmra_monotoneN, cmra_monotone_validN.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
  - by intros [x a] [y b]; rewrite !auth_included /=;
257
      intros [??]; split; simpl; apply: cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
258
Qed.
259
Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
260
  CofeMor (auth_map f).
261
Lemma authC_map_ne A B n : Proper (dist n ==> dist n) (@authC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
262
Proof. intros f f' Hf [[[a|]|] b]; repeat constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
Program Definition authRF (F : urFunctor) : rFunctor := {|
  rFunctor_car A B := authR (urFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(auth_map_id x).
  apply auth_map_ext=>y; apply urFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
  apply auth_map_ext=>y; apply urFunctor_compose.
Qed.

Instance authRF_contractive F :
  urFunctorContractive F  rFunctorContractive (authRF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
Qed.

286 287 288
Program Definition authURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := authUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
Ralf Jung's avatar
Ralf Jung committed
289
|}.
290
Next Obligation.
291
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
292
Qed.
Ralf Jung's avatar
Ralf Jung committed
293
Next Obligation.
294
  intros F A B x. rewrite /= -{2}(auth_map_id x).
295
  apply auth_map_ext=>y; apply urFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
296 297
Qed.
Next Obligation.
298
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
299
  apply auth_map_ext=>y; apply urFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
300
Qed.
301

302 303
Instance authURF_contractive F :
  urFunctorContractive F  urFunctorContractive (authURF F).
304
Proof.
305
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
306
Qed.