double_negation.v 14 KB
Newer Older
1
From iris.base_logic Require Import base_logic.
2
Set Default Proof Using "Type".
3

4
(* In this file we show that the bupd can be thought of a kind of
5
   step-indexed double-negation when our meta-logic is classical *)
6
Definition uPred_nnupd {M} (P: uPred M) : uPred M :=
7
   n, (P - ^n False) - ^n False.
8

9
Notation "|=n=> Q" := (uPred_nnupd Q)
10
11
12
  (at level 99, Q at level 200, format "|=n=>  Q") : uPred_scope.
Notation "P =n=> Q" := (P  |=n=> Q)
  (at level 99, Q at level 200, only parsing) : C_scope.
13
14
Notation "P =n=∗ Q" := (P - |=n=> Q)%I
  (at level 99, Q at level 200, format "P  =n=∗  Q") : uPred_scope.
15
16

(* Our goal is to prove that:
17
18
  (1) |=n=> has (nearly) all the properties of the |==> modality that are used in Iris
  (2) If our meta-logic is classical, then |=n=> and |==> are equivalent
19
20
*)

21
Section bupd_nnupd.
22
23
24
25
26
27
28
29
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Implicit Types x : M.
Import uPred.

(* Helper lemmas about iterated later modalities *)
Ralf Jung's avatar
Ralf Jung committed
30
Lemma laterN_big n a x φ: {n} x   a  n  (^a ⌜φ⌝)%I n x  φ.
31
32
33
34
35
36
37
38
39
Proof.
  induction 2 as [| ?? IHle].
  - induction a; repeat (rewrite //= || uPred.unseal). 
    intros Hlater. apply IHa; auto using cmra_validN_S.
    move:Hlater; repeat (rewrite //= || uPred.unseal). 
  - intros. apply IHle; auto using cmra_validN_S.
    eapply uPred_closed; eauto using cmra_validN_S.
Qed.

Ralf Jung's avatar
Ralf Jung committed
40
Lemma laterN_small n a x φ: {n} x   n < a  (^a ⌜φ⌝)%I n x.
41
42
43
44
45
46
47
48
49
50
51
Proof.
  induction 2.
  - induction n as [| n IHn]; [| move: IHn];
      repeat (rewrite //= || uPred.unseal).
    naive_solver eauto using cmra_validN_S.
  - induction n as [| n IHn]; [| move: IHle];
      repeat (rewrite //= || uPred.unseal).
    red; rewrite //=. intros.
    eapply (uPred_closed _ _ (S n)); eauto using cmra_validN_S.
Qed.

52
53
(* It is easy to show that most of the basic properties of bupd that
   are used throughout Iris hold for nnupd. 
54
55

   In fact, the first three properties that follow hold for any
56
   modality of the form (- -∗ Q) -∗ Q for arbitrary Q. The situation
57
   here is slightly different, because nnupd is of the form 
58
   ∀ n, (- -∗ (Q n)) -∗ (Q n), but the proofs carry over straightforwardly.
59
60

 *)
61

62
Lemma nnupd_intro P : P =n=> P.
63
Proof. apply forall_intro=>?. apply wand_intro_l, wand_elim_l. Qed.
64
Lemma nnupd_mono P Q : (P  Q)  (|=n=> P) =n=> Q.
65
66
67
Proof.
  intros HPQ. apply forall_intro=>n.
  apply wand_intro_l.  rewrite -{1}HPQ.
68
  rewrite /uPred_nnupd (forall_elim n).
69
70
  apply wand_elim_r.
Qed.
71
Lemma nnupd_frame_r P R : (|=n=> P)  R =n=> P  R.
72
73
74
Proof.
  apply forall_intro=>n. apply wand_intro_r.
  rewrite (comm _ P) -wand_curry.
75
  rewrite /uPred_nnupd (forall_elim n).
76
77
  by rewrite -assoc wand_elim_r wand_elim_l.
Qed.
78
Lemma nnupd_ownM_updateP x (Φ : M  Prop) :
Ralf Jung's avatar
Ralf Jung committed
79
  x ~~>: Φ  uPred_ownM x =n=>  y, ⌜Φ y  uPred_ownM y.
80
Proof. 
81
  intros Hbupd. split. rewrite /uPred_nnupd. repeat uPred.unseal. 
82
83
84
  intros n y ? Hown a.
  red; rewrite //= => n' yf ??.
  inversion Hown as (x'&Hequiv).
85
  edestruct (Hbupd n' (Some (x'  yf))) as (y'&?&?); eauto.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  { by rewrite //= assoc -(dist_le _ _ _ _ Hequiv). }
  case (decide (a  n')).
  - intros Hle Hwand.
    exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' (y'  x'))); eauto.
    * rewrite comm -assoc. done. 
    * rewrite comm -assoc. done. 
    * eexists. split; eapply uPred_mono; red; rewrite //=; eauto.
  - intros; assert (n' < a). omega.
    move: laterN_small. uPred.unseal.
    naive_solver.
Qed.

(* However, the transitivity property seems to be much harder to
   prove. This is surprising, because transitivity does hold for 
100
   modalities of the form (- -∗ Q) -∗ Q. What goes wrong when we quantify
101
102
103
   now over n? 
 *)

104
Remark nnupd_trans P: (|=n=> |=n=> P)  (|=n=> P).
105
Proof.
106
  rewrite /uPred_nnupd.
107
108
  apply forall_intro=>a. apply wand_intro_l.
  rewrite (forall_elim a).
109
  rewrite (nnupd_intro (P - _)).
110
  rewrite /uPred_nnupd.
111
112
113
114
  (* Oops -- the exponents of the later modality don't match up! *)
Abort.

(* Instead, we will need to prove this in the model. We start by showing that 
115
   nnupd is the limit of a the following sequence:
116

117
118
119
   (- -∗ False) - ∗ False,
   (- -∗ ▷ False) - ∗ ▷ False ∧ (- -∗ False) - ∗ False,
   (- -∗ ▷^2 False) - ∗ ▷^2 False ∧ (- -∗ ▷ False) - ∗ ▷ False ∧ (- -∗ False) - ∗ False,
120
121
122
   ...

   Then, it is easy enough to show that each of the uPreds in this sequence
123
   is transitive. It turns out that this implies that nnupd is transitive. *)
124
125
126
   

(* The definition of the sequence above: *)
127
Fixpoint uPred_nnupd_k {M} k (P: uPred M) : uPred M :=
128
  ((P - ^k False) - ^k False) 
129
130
  match k with 
    O => True
131
  | S k' => uPred_nnupd_k k' P
132
133
  end.

134
Notation "|=n=>_ k Q" := (uPred_nnupd_k k Q)
135
136
137
  (at level 99, k at level 9, Q at level 200, format "|=n=>_ k  Q") : uPred_scope.


138
139
(* One direction of the limiting process is easy -- nnupd implies nnupd_k for each k *)
Lemma nnupd_trunc1 k P: (|=n=> P)  |=n=>_k P.
140
Proof.
141
  induction k. 
142
  - rewrite /uPred_nnupd_k /uPred_nnupd. 
143
144
    rewrite (forall_elim 0) //= right_id //.
  - simpl. apply and_intro; auto.
145
    rewrite /uPred_nnupd. 
146
    rewrite (forall_elim (S k)) //=.
147
148
Qed.

149
Lemma nnupd_k_elim n k P: n  k  ((|=n=>_k P)  (P - (^n False))   (^n False))%I.
150
151
152
153
154
155
156
157
Proof.
  induction k.
  - inversion 1; subst; rewrite //= ?right_id. apply wand_elim_l.
  - inversion 1; subst; rewrite //= ?right_id.
    * rewrite and_elim_l. apply wand_elim_l.
    * rewrite and_elim_r IHk //.
Qed.

158
Lemma nnupd_k_unfold k P:
159
  (|=n=>_(S k) P)  ((P - (^(S k) False)) - (^(S k) False))  (|=n=>_k P).
160
Proof. done.  Qed.
161
Lemma nnupd_k_unfold' k P n x:
162
  (|=n=>_(S k) P)%I n x  (((P - (^(S k) False)) - (^(S k) False))  (|=n=>_k P))%I n x.
163
164
Proof. done.  Qed.

165
166
Lemma nnupd_k_weaken k P: (|=n=>_(S k) P)  |=n=>_k P.
Proof. by rewrite nnupd_k_unfold and_elim_r. Qed.
167

168
(* Now we are ready to show nnupd is the limit -- ie, for each k, it is within distance k
169
   of the kth term of the sequence *)
170
Lemma nnupd_nnupd_k_dist k P: (|=n=> P)%I {k} (|=n=>_k P)%I.
171
  split; intros n' x Hle Hx. split.
172
  - by apply (nnupd_trunc1 k).
173
  - revert n' x Hle Hx; induction k; intros n' x Hle Hx;
174
      rewrite ?nnupd_k_unfold' /uPred_nnupd.
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    * rewrite //=. unseal.
      inversion Hle; subst.
      intros (HnnP&_) n k' x' ?? HPF.
      case (decide (k' < n)).
      ** move: laterN_small; uPred.unseal; naive_solver.
      ** intros. exfalso. eapply HnnP; eauto.
         assert (n  k'). omega.
         intros n'' x'' ???.
         specialize (HPF n'' x''). exfalso.
         eapply laterN_big; last (unseal; eauto).
         eauto. omega.
    * inversion Hle; subst.
      ** unseal. intros (HnnP&HnnP_IH) n k' x' ?? HPF.
         case (decide (k' < n)).
         *** move: laterN_small; uPred.unseal; naive_solver.
         *** intros. exfalso. assert (n  k'). omega.
             assert (n = S k  n < S k) as [->|] by omega.
             **** eapply laterN_big; eauto; unseal. eapply HnnP; eauto.
193
             **** move:nnupd_k_elim. unseal. intros Hnnupdk. 
194
                  eapply laterN_big; eauto. unseal.
195
                  eapply (Hnnupdk n k); first omega; eauto.
196
197
198
199
200
201
                  exists x, x'. split_and!; eauto. eapply uPred_closed; eauto.
                  eapply cmra_validN_op_l; eauto.
      ** intros HP. eapply IHk; auto.
         move:HP. unseal. intros (?&?); naive_solver.
Qed.

202
203
(* nnupd_k has a number of structural properties, including transitivity *)
Lemma nnupd_k_intro k P: P  (|=n=>_k P).
204
205
206
207
208
209
210
Proof.
  induction k; rewrite //= ?right_id.
  - apply wand_intro_l. apply wand_elim_l.
  - apply and_intro; auto. 
    apply wand_intro_l. apply wand_elim_l.
Qed.

211
Lemma nnupd_k_mono k P Q: (P  Q)  (|=n=>_k P)  (|=n=>_k Q).
212
213
214
215
216
Proof.
  induction k; rewrite //= ?right_id=>HPQ. 
  - do 2 (apply wand_mono; auto).
  - apply and_mono; auto; do 2 (apply wand_mono; auto).
Qed.
217
218
Instance nnupd_k_mono' k: Proper (() ==> ()) (@uPred_nnupd_k M k).
Proof. by intros P P' HP; apply nnupd_k_mono. Qed.
219

220
221
Instance nnupd_k_ne k : NonExpansive (@uPred_nnupd_k M k).
Proof. intros n. induction k; rewrite //= ?right_id=>P P' HP; by rewrite HP. Qed.
222
223
224
225
Lemma nnupd_k_proper k P Q: (P  Q)  (|=n=>_k P)  (|=n=>_k Q).
Proof. intros HP; apply (anti_symm ()); eapply nnupd_k_mono; by rewrite HP. Qed.
Instance nnupd_k_proper' k: Proper (() ==> ()) (@uPred_nnupd_k M k).
Proof. by intros P P' HP; apply nnupd_k_proper. Qed.
226

227
Lemma nnupd_k_trans k P: (|=n=>_k |=n=>_k P)  (|=n=>_k P).
228
229
230
231
Proof.
  revert P.
  induction k; intros P.
  - rewrite //= ?right_id. apply wand_intro_l. 
232
    rewrite {1}(nnupd_k_intro 0 (P - False)%I) //= ?right_id. apply wand_elim_r. 
233
  - rewrite {2}(nnupd_k_unfold k P).
234
    apply and_intro.
235
236
    * rewrite (nnupd_k_unfold k P). rewrite and_elim_l.
      rewrite nnupd_k_unfold. rewrite and_elim_l.
237
      apply wand_intro_l. 
238
      rewrite {1}(nnupd_k_intro (S k) (P - ^(S k) (False)%I)).
239
240
      rewrite nnupd_k_unfold and_elim_l. apply wand_elim_r.
    * do 2 rewrite nnupd_k_weaken //.
241
242
Qed.

243
Lemma nnupd_trans P : (|=n=> |=n=> P) =n=> P.
244
245
Proof.
  split=> n x ? Hnn.
246
247
248
249
250
  eapply nnupd_nnupd_k_dist in Hnn; eauto.
  eapply (nnupd_k_ne (n) n ((|=n=>_(n) P)%I)) in Hnn; eauto;
    [| symmetry; eapply nnupd_nnupd_k_dist].
  eapply nnupd_nnupd_k_dist; eauto.
  by apply nnupd_k_trans.
251
252
Qed.

253
254
255
256
(* Now that we have shown nnupd has all of the desired properties of
   bupd, we go further and show it is in fact equivalent to bupd! The
   direction from bupd to nnupd is similar to the proof of
   nnupd_ownM_updateP *)
257

258
Lemma bupd_nnupd P: (|==> P)  |=n=> P.
259
Proof.
260
  split. rewrite /uPred_nnupd. repeat uPred.unseal. intros n x ? Hbupd a.
261
  red; rewrite //= => n' yf ??.
262
  edestruct Hbupd as (x'&?&?); eauto.
263
264
265
266
267
268
269
270
271
272
273
274
275
  case (decide (a  n')).
  - intros Hle Hwand.
    exfalso. eapply laterN_big; last (uPred.unseal; eapply (Hwand n' x')); eauto.
    * rewrite comm. done. 
    * rewrite comm. done. 
  - intros; assert (n' < a). omega.
    move: laterN_small. uPred.unseal.
    naive_solver.
Qed.

(* However, the other direction seems to need a classical axiom: *)
Section classical.
Context (not_all_not_ex:  (P : M  Prop), ¬ ( n : M, ¬ P n)   n : M, P n).
276
Lemma nnupd_bupd P:  (|=n=> P)  (|==> P).
277
Proof using Type*.
278
  rewrite /uPred_nnupd.
279
280
  split. uPred.unseal; red; rewrite //=.
  intros n x ? Hforall k yf Hle ?.
281
  apply not_all_not_ex.
282
283
284
285
286
287
288
289
290
291
  intros Hfal.
  specialize (Hforall k k).
  eapply laterN_big; last (uPred.unseal; red; rewrite //=; eapply Hforall);
    eauto.
  red; rewrite //= => n' x' ???.
  case (decide (n' = k)); intros.
  - subst. exfalso. eapply Hfal. rewrite (comm op); eauto.
  - assert (n' < k). omega.
    move: laterN_small. uPred.unseal. naive_solver.
Qed.
292
End classical.
293

294
295
(* We might wonder whether we can prove an adequacy lemma for nnupd. We could combine
   the adequacy lemma for bupd with the previous result to get adquacy for nnupd, but 
296
297
   this would rely on the classical axiom we needed to prove the equivalence! Can
   we establish adequacy without axioms? Unfortunately not, because adequacy for 
298
   nnupd would imply double negation elimination, which is classical: *)
299

300
Lemma nnupd_dne φ: (|=n=> ¬¬ φ  φ⌝: uPred M)%I.
301
Proof.
302
  rewrite /uPred_nnupd. apply forall_intro=>n.
303
304
305
  apply wand_intro_l. rewrite ?right_id. 
  assert ( φ, ¬¬¬¬φ  ¬¬φ) by naive_solver.
  assert (Hdne: ¬¬ (¬¬φ  φ)) by naive_solver.
306
  split. unseal. intros n' ?? Hupd.
307
308
309
  case (decide (n' < n)).
  - intros. move: laterN_small. unseal. naive_solver.
  - intros. assert (n  n'). omega. 
Robbert Krebbers's avatar
Robbert Krebbers committed
310
    exfalso. specialize (Hupd n' ε).
311
312
    eapply Hdne. intros Hfal.
    eapply laterN_big; eauto. 
313
    unseal. rewrite right_id in Hupd *; naive_solver.
314
315
Qed.

316
(* Nevertheless, we can prove a weaker form of adequacy (which is equvialent to adequacy
317
   under classical axioms) directly without passing through the proofs for bupd: *)
318
319
320
321
322
Lemma adequacy_helper1 P n k x:
  {S n + k} x  ¬¬ (Nat.iter (S n) (λ P, |=n=>  P)%I P (S n + k) x) 
             ¬¬ ( x', {n + k} (x')  Nat.iter n (λ P, |=n=>  P)%I P (n + k) (x')).
Proof.
  revert k P x. induction n.
323
  - rewrite /uPred_nnupd. unseal=> k P x Hx Hf1 Hf2.
324
325
    eapply Hf1. intros Hf3.
    eapply (laterN_big (S k) (S k)); eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
326
    specialize (Hf3 (S k) (S k) ε). rewrite right_id in Hf3 *. unseal.
327
328
329
330
331
332
333
334
335
336
337
338
339
    intros Hf3. eapply Hf3; eauto.
    intros ??? Hx'. rewrite left_id in Hx' *=> Hx'.
    unseal. 
    assert (n' < S k  n' = S k) as [|] by omega.
    * intros. move:(laterN_small n' (S k) x' False). rewrite //=. unseal. intros Hsmall. 
      eapply Hsmall; eauto.
    * subst. intros. exfalso. eapply Hf2. exists x'. split; eauto using cmra_validN_S.
  - intros k P x Hx. rewrite ?Nat_iter_S_r. 
    replace (S (S n) + k) with (S n + (S k)) by omega.
    replace (S n + k) with (n + (S k)) by omega.
    intros. eapply IHn. replace (S n + S k) with (S (S n) + k) by omega. eauto.
    rewrite ?Nat_iter_S_r. eauto.
Qed.
340

341
342
343
344
345
346
347
348
349
350
Lemma adequacy_helper2 P n k x:
  {S n + k} x  ¬¬ (Nat.iter (S n) (λ P, |=n=>  P)%I P (S n + k) x) 
             ¬¬ ( x', {k} (x')  Nat.iter 0 (λ P, |=n=>  P)%I P k (x')).
Proof.
  revert x. induction n.
  - specialize (adequacy_helper1 P 0). rewrite //=. naive_solver.
  - intros ?? Hfal%adequacy_helper1; eauto using cmra_validN_S.
    intros Hfal'. eapply Hfal. intros (x''&?&?).
    eapply IHn; eauto.
Qed.
351

352
Lemma adequacy φ n : Nat.iter n (λ P, |=n=>  P)%I ⌜φ⌝%I  ¬¬ φ.
353
Proof.
Ralf Jung's avatar
Ralf Jung committed
354
  cut ( x, {S n} x  Nat.iter n (λ P, |=n=>  P)%I ⌜φ⌝%I (S n) x  ¬¬φ).
355
356
357
358
359
360
361
362
363
  { intros help H. eapply (help ); eauto using ucmra_unit_validN.
    eapply H; try unseal; eauto using ucmra_unit_validN. red; rewrite //=. }
  destruct n.
  - rewrite //=; unseal; auto.
  - intros ??? Hfal.
    eapply (adequacy_helper2 _ n 1); (replace (S n + 1) with (S (S n)) by omega); eauto.
    unseal. intros (x'&?&Hphi). simpl in *.
    eapply Hfal. auto.
Qed.
364

365
(* Open question:
366

367
368
   Do the basic properties of the |==> modality (bupd_intro, bupd_mono, rvs_trans, rvs_frame_r,
      bupd_ownM_updateP, and adequacy) uniquely characterize |==>?
369
*)
370

371
End bupd_nnupd.