cofe.v 19.3 KB
Newer Older
1
From algebra Require Export base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
(** This files defines (a shallow embedding of) the category of COFEs:
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.

    In principle, it would be possible to perform a large part of the
    development on OFEs, i.e., on bisected metric spaces that are not
    necessary complete. This is because the function space A → B has a
    completion if B has one - for A, the metric itself suffices.
    That would result in a simplification of some constructions, becuase
    no completion would have to be provided. However, on the other hand,
    we would have to introduce the notion of OFEs into our alebraic
    hierarchy, which we'd rather avoid. Furthermore, on paper, justifying
    this mix of OFEs and COFEs is a little fuzzy.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
24
Instance: Params (@dist) 3.
25
26
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
27
Hint Extern 0 (_ {_} _) => reflexivity.
28
Hint Extern 0 (_ {_} _) => symmetry; assumption.
29
30
31

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
32
  | _ => progress simplify_eq/=
33
34
35
36
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
37
  repeat match goal with
38
  | _ => progress simplify_eq/=
39
40
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
41
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
43
44

Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
45
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
48
49
50
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

51
Record CofeMixin A `{Equiv A, Compl A} := {
52
  mixin_equiv_dist x y : x  y   n, x {n} y;
53
  mixin_dist_equivalence n : Equivalence (dist n);
54
  mixin_dist_S n x y : x {S n} y  x {n} y;
55
  mixin_conv_compl n c : compl c {n} c n
Robbert Krebbers's avatar
Robbert Krebbers committed
56
}.
57
Class Contractive `{Dist A, Dist B} (f : A  B) :=
58
  contractive n x y : ( i, i < n  x {i} y)  f x {n} f y.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
60
61
62
63
64
65

(** Bundeled version *)
Structure cofeT := CofeT {
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
66
  cofe_mixin : CofeMixin cofe_car
Robbert Krebbers's avatar
Robbert Krebbers committed
67
}.
68
Arguments CofeT {_ _ _ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Add Printing Constructor cofeT.
70
71
72
73
74
75
76
77
78
79
80
Existing Instances cofe_equiv cofe_dist cofe_compl.
Arguments cofe_car : simpl never.
Arguments cofe_equiv : simpl never.
Arguments cofe_dist : simpl never.
Arguments cofe_compl : simpl never.
Arguments cofe_mixin : simpl never.

(** Lifting properties from the mixin *)
Section cofe_mixin.
  Context {A : cofeT}.
  Implicit Types x y : A.
81
  Lemma equiv_dist x y : x  y   n, x {n} y.
82
83
84
  Proof. apply (mixin_equiv_dist _ (cofe_mixin A)). Qed.
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
  Proof. apply (mixin_dist_equivalence _ (cofe_mixin A)). Qed.
85
  Lemma dist_S n x y : x {S n} y  x {n} y.
86
  Proof. apply (mixin_dist_S _ (cofe_mixin A)). Qed.
87
  Lemma conv_compl n (c : chain A) : compl c {n} c n.
88
89
90
  Proof. apply (mixin_conv_compl _ (cofe_mixin A)). Qed.
End cofe_mixin.

91
92
93
94
95
(** Discrete COFEs and Timeless elements *)
Class Timeless {A : cofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Class Discrete (A : cofeT) := discrete_timeless (x : A) :> Timeless x.

Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
(** General properties *)
Section cofe.
98
99
  Context {A : cofeT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
100
101
102
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
103
104
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
105
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
  Qed.
107
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
110
111
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
112
  Qed.
113
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
114
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
118
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  Proof. induction 2; eauto using dist_S. Qed.
121
122
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
123
  Instance ne_proper {B : cofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
126
  Instance ne_proper_2 {B C : cofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
129
130
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
132
  Qed.
133
  Lemma contractive_S {B : cofeT} (f : A  B) `{!Contractive f} n x y :
134
135
    x {n} y  f x {S n} f y.
  Proof. eauto using contractive, dist_le with omega. Qed.
136
137
138
  Lemma contractive_0 {B : cofeT} (f : A  B) `{!Contractive f} x y :
    f x {0} f y.
  Proof. eauto using contractive with omega. Qed.
139
  Global Instance contractive_ne {B : cofeT} (f : A  B) `{!Contractive f} n :
140
    Proper (dist n ==> dist n) f | 100.
141
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
142
  Global Instance contractive_proper {B : cofeT} (f : A  B) `{!Contractive f} :
143
    Proper (() ==> ()) f | 100 := _.
144

145
146
147
148
149
  Lemma conv_compl' n (c : chain A) : compl c {n} c (S n).
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
150
151
152
153
154
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
    split; intros; [by apply equiv_dist|].
    apply (timeless _), dist_le with n; auto with lia.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
End cofe.

157
158
159
Instance const_contractive {A B : cofeT} (x : A) : Contractive (@const A B x).
Proof. by intros n y1 y2. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
162
163
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
164
Next Obligation. by intros ? A ? B f Hf c n i ?; apply Hf, chain_cauchy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
165

Robbert Krebbers's avatar
Robbert Krebbers committed
166
(** Fixpoint *)
167
Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A  A)
168
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
Next Obligation.
170
171
  intros A ? f ? n.
  induction n as [|n IH]; intros [|i] ?; simpl in *; try reflexivity || omega.
172
173
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
Qed.
175
Program Definition fixpoint {A : cofeT} `{Inhabited A} (f : A  A)
176
  `{!Contractive f} : A := compl (fixpoint_chain f).
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178

Section fixpoint.
179
  Context {A : cofeT} `{Inhabited A} (f : A  A) `{!Contractive f}.
180
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
182
    apply equiv_dist=>n; rewrite /fixpoint (conv_compl n (fixpoint_chain f)) //.
183
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  Qed.
185
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
186
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
  Proof.
188
    intros Hfg. rewrite /fixpoint
Robbert Krebbers's avatar
Robbert Krebbers committed
189
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
190
191
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
  Qed.
193
194
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
196
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.
197
Global Opaque fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
199

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
200
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
201
202
203
204
205
206
207
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

208
209
210
211
212
Section cofe_mor.
  Context {A B : cofeT}.
  Global Instance cofe_mor_proper (f : cofeMor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, cofe_mor_ne. Qed.
  Instance cofe_mor_equiv : Equiv (cofeMor A B) := λ f g,  x, f x  g x.
213
  Instance cofe_mor_dist : Dist (cofeMor A B) := λ n f g,  x, f x {n} g x.
214
215
216
217
218
219
  Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
    {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Instance cofe_mor_compl : Compl (cofeMor A B) := λ c,
    {| cofe_mor_car x := compl (fun_chain c x) |}.
  Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
220
221
    intros c n x y Hx. by rewrite (conv_compl n (fun_chain c x))
      (conv_compl n (fun_chain c y)) /= Hx.
222
223
224
225
  Qed.
  Definition cofe_mor_cofe_mixin : CofeMixin (cofeMor A B).
  Proof.
    split.
226
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
227
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
228
    - intros n; split.
229
230
      + by intros f x.
      + by intros f g ? x.
231
      + by intros f g h ?? x; trans (g x).
232
    - by intros n f g ? x; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
234
    - intros n c x; simpl.
      by rewrite (conv_compl n (fun_chain c x)) /=.
235
236
237
238
239
240
241
242
243
244
  Qed.
  Canonical Structure cofe_mor : cofeT := CofeT cofe_mor_cofe_mixin.

  Global Instance cofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
  Global Instance cofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
  Lemma cofe_mor_ext (f g : cofeMor A B) : f  g   x, f x  g x.
  Proof. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
245

246
247
248
End cofe_mor.

Arguments cofe_mor : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
Infix "-n>" := cofe_mor (at level 45, right associativity).
250
251
Instance cofe_more_inhabited {A B : cofeT} `{Inhabited B} :
  Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
252
253
254
255

(** Identity and composition *)
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
256

Robbert Krebbers's avatar
Robbert Krebbers committed
257
258
259
260
261
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
262
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
263
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
264

Ralf Jung's avatar
Ralf Jung committed
265
(* Function space maps *)
266
Definition cofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
267
  (h : A -n> B) : A' -n> B' := g  h  f.
268
Instance cofe_mor_map_ne {A A' B B'} n :
Ralf Jung's avatar
Ralf Jung committed
269
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@cofe_mor_map A A' B B').
270
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
271

272
Definition cofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
Ralf Jung's avatar
Ralf Jung committed
273
  (A -n> B) -n> (A' -n>  B') := CofeMor (cofe_mor_map f g).
274
Instance cofe_morC_map_ne {A A' B B'} n :
Ralf Jung's avatar
Ralf Jung committed
275
276
277
  Proper (dist n ==> dist n ==> dist n) (@cofe_morC_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ?. rewrite /= /cofe_mor_map.
278
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
279
280
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
281
(** unit *)
282
283
284
285
286
287
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
  Instance unit_compl : Compl unit := λ _, ().
  Definition unit_cofe_mixin : CofeMixin unit.
  Proof. by repeat split; try exists 0. Qed.
  Canonical Structure unitC : cofeT := CofeT unit_cofe_mixin.
288
  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
289
  Proof. done. Qed.
290
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
292

(** Product *)
293
294
295
296
297
298
299
300
301
302
303
304
305
Section product.
  Context {A B : cofeT}.

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
  Instance prod_compl : Compl (A * B) := λ c,
    (compl (chain_map fst c), compl (chain_map snd c)).
  Definition prod_cofe_mixin : CofeMixin (A * B).
  Proof.
    split.
306
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
307
      rewrite !equiv_dist; naive_solver.
308
309
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
311
    - intros n c; split. apply (conv_compl n (chain_map fst c)).
      apply (conv_compl n (chain_map snd c)).
312
313
314
315
316
  Qed.
  Canonical Structure prodC : cofeT := CofeT prod_cofe_mixin.
  Global Instance pair_timeless (x : A) (y : B) :
    Timeless x  Timeless y  Timeless (x,y).
  Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
317
318
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
319
320
321
322
323
324
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

Instance prod_map_ne {A A' B B' : cofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
325
326
327
328
329
330
331
332
333
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

334
335
336
337
338
(** Functors *)
Structure cFunctor := CFunctor {
  cFunctor_car : cofeT  cofeT -> cofeT;
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
339
  cFunctor_contractive {A1 A2 B1 B2} : Contractive (@cFunctor_map A1 A2 B1 B2);
340
341
342
343
344
345
  cFunctor_id {A B : cofeT} (x : cFunctor_car A B) :
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
346
Existing Instances cFunctor_contractive.
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
Instance: Params (@cFunctor_map) 5.

Definition cFunctor_diag (F: cFunctor) (A: cofeT) : cofeT := cFunctor_car F A A.
Coercion cFunctor_diag : cFunctor >-> Funclass.

Program Definition constCF (B : cofeT) : cFunctor :=
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
362
363
  by intros F1 F2 A1 A2 B1 B2 n ???;
    apply prodC_map_ne; apply cFunctor_contractive.
364
365
366
367
368
369
370
Qed.
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.

Ralf Jung's avatar
Ralf Jung committed
371
372
373
374
375
376
Program Definition cofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := cofe_mor (cFunctor_car F1 B A) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    cofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
|}.
Next Obligation.
377
378
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
  apply cofe_morC_map_ne; apply cFunctor_contractive=>i ?; split; by apply Hfg.
Ralf Jung's avatar
Ralf Jung committed
379
380
Qed.
Next Obligation.
381
382
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
383
384
Qed.
Next Obligation.
385
386
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
387
388
Qed.

389
390
391
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
392
  Instance discrete_dist : Dist A := λ n x y, x  y.
393
  Instance discrete_compl : Compl A := λ c, c 0.
394
  Definition discrete_cofe_mixin : CofeMixin A.
395
396
  Proof.
    split.
397
398
399
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
400
401
    - intros n c. rewrite /compl /discrete_compl /=;
      symmetry; apply (chain_cauchy c 0 n). omega.
402
  Qed.
403
  Definition discreteC : cofeT := CofeT discrete_cofe_mixin.
404
405
  Global Instance discrete_discrete_cofe : Discrete discreteC.
  Proof. by intros x y. Qed.
406
End discrete_cofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Arguments discreteC _ {_ _}.
408

Robbert Krebbers's avatar
Robbert Krebbers committed
409
Definition leibnizC (A : Type) : cofeT := @discreteC A equivL _.
410
411
412
Instance leibnizC_leibniz : LeibnizEquiv (leibnizC A).
Proof. by intros A x y. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
413
414
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
415

416
(** Later *)
417
Inductive later (A : Type) : Type := Next { later_car : A }.
418
Add Printing Constructor later.
419
Arguments Next {_} _.
420
Arguments later_car {_} _.
421
Lemma later_eta {A} (x : later A) : Next (later_car x) = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
Proof. by destruct x. Qed.
423

424
Section later.
425
426
427
  Context {A : cofeT}.
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,
428
    match n with 0 => True | S n => later_car x {n} later_car y end.
429
  Program Definition later_chain (c : chain (later A)) : chain A :=
430
    {| chain_car n := later_car (c (S n)) |}.
431
  Next Obligation. intros c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
432
  Instance later_compl : Compl (later A) := λ c, Next (compl (later_chain c)).
433
  Definition later_cofe_mixin : CofeMixin (later A).
434
435
  Proof.
    split.
436
    - intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
437
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
438
    - intros [|n]; [by split|split]; unfold dist, later_dist.
439
440
      + by intros [x].
      + by intros [x] [y].
441
      + by intros [x] [y] [z] ??; trans y.
442
    - intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
443
    - intros [|n] c; [done|by apply (conv_compl n (later_chain c))].
444
  Qed.
445
  Canonical Structure laterC : cofeT := CofeT later_cofe_mixin.
446
447
  Global Instance Next_contractive : Contractive (@Next A).
  Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed.
448
  Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
Robbert Krebbers's avatar
Robbert Krebbers committed
449
  Proof. by intros x y. Qed.
450
End later.
451
452
453
454

Arguments laterC : clear implicits.

Definition later_map {A B} (f : A  B) (x : later A) : later B :=
455
  Next (f (later_car x)).
456
457
458
459
460
461
462
463
464
Instance later_map_ne {A B : cofeT} (f : A  B) n :
  Proper (dist (pred n) ==> dist (pred n)) f 
  Proper (dist n ==> dist n) (later_map f) | 0.
Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Lemma later_map_id {A} (x : later A) : later_map id x = x.
Proof. by destruct x. Qed.
Lemma later_map_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
  later_map (g  f) x = later_map g (later_map f x).
Proof. by destruct x. Qed.
465
466
467
Lemma later_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  later_map f x  later_map g x.
Proof. destruct x; intros Hf; apply Hf. Qed.
468
469
470
Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
  CofeMor (later_map f).
Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
471
Proof. intros [|n] f g Hf n'; [done|]; apply Hf; lia. Qed.
472
473
474
475
476
477

Program Definition laterCF : cFunctor := {|
  cFunctor_car A B := laterC B;
  cFunctor_map A1 A2 B1 B2 fg := laterC_map (fg.2)
|}.
Next Obligation.
478
479
  intros A1 A2 B1 B2 n fg fg' Hfg.
  apply laterC_map_contractive=> i ?; by apply Hfg.
480
481
482
Qed.
Next Obligation. by intros A B []. Qed.
Next Obligation. by intros A1 A2 A3 B1 B2 B3 f g f' g' []. Qed.