derived.tex 12.6 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
2
\section{Derived constructions}

3
\subsection{Non-atomic (``thread-local'') invariants}
Ralf Jung's avatar
Ralf Jung committed
4
5

Sometimes it is necessary to maintain invariants that we need to open non-atomically.
6
7
8
9
10
Clearly, for this mechanism to be sound we need something that prevents us from opening the same invariant twice, something like the masks that avoid reentrancy on the ``normal'', atomic invariants.
The idea is to use tokens\footnote{Very much like the tokens that are used to encode ``normal'', atomic invariants} that guard access to non-atomic invariants.
Having the token $\NaTokE\pid\mask$ indicates that we can open all invariants in $\mask$.
The $\pid$ here is the name of the \emph{invariant pool}.
This mechanism allows us to have multiple, independent pools of invariants that all have their own namespaces.
Ralf Jung's avatar
Ralf Jung committed
11

12
13
14
15
16
One way to think about non-atomic invariants is as ``thread-local invariants'',
where every pool is a thread.
Every thread thus has its own, independent set of invariants.
Every thread threads through all the tokens for its own pool, so that each invariant can only be opened in the thread it belongs to.
As a consequence, they can be kept open around any sequence of expressions (\ie there is no restriction to atomic expressions) -- after all, there cannot be any races with other threads.
Ralf Jung's avatar
Ralf Jung committed
17
18
19

Concretely, this is the monoid structure we need:
\begin{align*}
20
21
\textdom{PId} \eqdef{}& \GName \\
\textmon{NaTok} \eqdef{}& \finpset{\InvName} \times \pset{\InvName}
Ralf Jung's avatar
Ralf Jung committed
22
\end{align*}
23
For every pool, there is a set of tokens designating which invariants are \emph{enabled} (closed).
Ralf Jung's avatar
Ralf Jung committed
24
25
26
27
This corresponds to the mask of ``normal'' invariants.
We re-use the structure given by namespaces for non-atomic invariants.
Furthermore, there is a \emph{finite} set of invariants that is \emph{disabled} (open).

28
Owning tokens is defined as follows:
Ralf Jung's avatar
Ralf Jung committed
29
\begin{align*}
30
31
\NaTokE\pid\mask \eqdef{}& \ownGhost{\pid}{ (\emptyset, \mask) } \\
\NaTok\pid \eqdef{}& \NaTokE\pid\top
Ralf Jung's avatar
Ralf Jung committed
32
33
34
35
36
\end{align*}

Next, we define non-atomic invariants.
To simplify this construction,we piggy-back into ``normal'' invariants.
\begin{align*}
37
  \NaInv\pid\namesp\prop \eqdef{}& \Exists \iname\in\namesp. \knowInv\namesp{\prop * \ownGhost\pid{(\set{\iname},\emptyset)} \lor \NaTokE\pid{\set{\iname}}}
Ralf Jung's avatar
Ralf Jung committed
38
39
40
41
42
43
\end{align*}


We easily obtain:
\begin{mathpar}
  \axiom
44
  {\TRUE \vs[\bot] \Exists\pid. \NaTok\pid}
Ralf Jung's avatar
Ralf Jung committed
45
46

  \axiom
47
  {\NaTokE\pid{\mask_1 \uplus \mask_2} \Lra \NaTokE\pid{\mask_1} * \NaTokE\pid{\mask_2}}
Ralf Jung's avatar
Ralf Jung committed
48
49
  
  \axiom
50
  {\later\prop  \vs[\namesp] \always\NaInv\pid\namesp\prop}
Ralf Jung's avatar
Ralf Jung committed
51
52

  \axiom
53
  {\NaInv\pid\namesp\prop \proves \Acc[\namesp]{\NaTokE\pid\namesp}{\later\prop}}
Ralf Jung's avatar
Ralf Jung committed
54
55
56
57
58
\end{mathpar}
from which we can derive
\begin{mathpar}
  \infer
  {\namesp \subseteq \mask}
59
  {\NaInv\pid\namesp\prop \proves \Acc[\namesp]{\NaTokE\pid\mask}{\later\prop * \NaTokE\pid{\mask \setminus \namesp}}}
Ralf Jung's avatar
Ralf Jung committed
60
61
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
62

63
% TODO: These need syncing with Coq
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
% \subsection{STSs with interpretation}\label{sec:stsinterp}

% Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.

% An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation:
% \begin{align*}
%   \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\
%   \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)}
% \end{align*}

% We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants:
% \begin{mathpar}
%  \inferH{NewSts}
%   {\infinite(\mask)}
%   {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname.   \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}}
%  \and
%  \axiomH{StsOpen}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}}
%  \and
%  \axiomH{StsClose}
%   {  \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T')  \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} }
% \end{mathpar}
% \begin{proof}
% \ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}.

% \ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$.

% \ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}.
% \end{proof}
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
% Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}):
% \begin{mathpar}
%  \inferH{Sts}
%   {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask]
%    \and \physatomic{\expr}}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSSts}
%   {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts}
%  We have to show
%  \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\]
%  where $\val$, $s'$, $T'$ are free in $Q$.
110
 
111
112
%  First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show
%  \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\]
113

114
115
116
%  Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$.
%  It remains to show:
%  \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\]
117
 
118
119
%  Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$:
%  \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\]
120
 
121
%  This holds by our premise.
Ralf Jung's avatar
Ralf Jung committed
122
% \end{proof}
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
% % \begin{proof}[Proof of \ruleref{VSSts}]
% % This is similar to above, so we only give the proof in short notation:

% % \hproof{%
% % 	Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\
% % 	\pline[\mask_1 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s_0, T)} * P
% % 	} \\
% % 	\pline[\mask_1]{%
% % 		\Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P
% % 	} \qquad by \ruleref{StsOpen} \\
% % 	Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\
% % 	\pline[\mask_2]{%
% % 		 \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)}
% % 	} \qquad by premiss \\
% % 	Context: $(s, T) \ststrans (s', T')$ \\
% % 	\pline[\mask_2 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s', T')} * Q(s', T')
% % 	} \qquad by \ruleref{StsClose}
% % }
% % \end{proof}

% \subsection{Authoritative monoids with interpretation}\label{sec:authinterp}

% Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}.

% Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$.
% Now define
% \begin{align*}
%   \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\
%   \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)}
% \end{align*}

% The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts:
% \begin{mathpar}
%  \inferH{NewAuth}
%   {\infinite(\mask) \and M~\textlog{cancellative}}
%   {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
%  \and
%  \axiomH{AuthOpen}
Ralf Jung's avatar
Ralf Jung committed
164
%   {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_\f.\; \later\pred_\bot(\melt \mtimes \melt_\f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_\f, \authfrag a:\auth{M}}}
165
166
%  \and
%  \axiomH{AuthClose}
Ralf Jung's avatar
Ralf Jung committed
167
%   {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_\f) * \ownGhost{\gname}{\authfull a \mtimes \melt_\f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
168
169
170
171
172
% \end{mathpar}

% These view shifts in turn can be used to prove variants of the invariant rules:
% \begin{mathpar}
%  \inferH{Auth}
Ralf Jung's avatar
Ralf Jung committed
173
%   {\forall \melt_\f.\; \hoare{\later\pred_\bot(a \mtimes \melt_\f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_\f) * Q}[\mask]
174
175
176
177
%    \and \physatomic{\expr}}
%   {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSAuth}
Ralf Jung's avatar
Ralf Jung committed
178
%   {\forall \melt_\f.\; \later\pred_\bot(a \mtimes \melt_\f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_\f) * Q(\meltB)}
179
180
181
182
183
184
185
186
%   {\Auth(M, \pred, \gname, \iname) \vdash
%    \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
%    \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
% \end{mathpar}


% \subsection{Ghost heap}
% \label{sec:ghostheap}%
Ralf Jung's avatar
Ralf Jung committed
187
% FIXME use the finmap provided by the global ghost ownership, instead of adding our own
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
% We define a simple ghost heap with fractional permissions.
% Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter).
% In such cases we use these ghost heaps.

% We seek to implement the following interface:
% \newcommand{\GRefspecmaps}{\textsf{GMapsTo}}%
% \begin{align*}
%  \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\
%   & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\
%   &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\
%   & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\
%   & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w
% \end{align*}
% We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$.
% Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$.

204
% To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\Val)$ and define
205
206
207
208
209
210
211
212
213
214
% \[
% 	x \fgmapsto[q] v \eqdef
% 	  \begin{cases}
%     	\ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\
%     	\FALSE & \text{otherwise}
%     \end{cases}
% \]
% The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}.
% The first implication is immediate from the definition.
% The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$.
215

Ralf Jung's avatar
Ralf Jung committed
216
217
218
219
220

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: