fin_collections.v 8.03 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on finite collections. Most
importantly, it implements a fold and size function and some useful induction
principles on finite collections . *)
6 7 8
From Coq Require Import Permutation.
From prelude Require Import relations listset.
From prelude Require Export numbers collections.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11 12 13 14 15

Instance collection_size `{Elements A C} : Size C := length  elements.
Definition collection_fold `{Elements A C} {B}
  (f : A  B  B) (b : B) : C  B := foldr f b  elements.

Section fin_collection.
Context `{FinCollection A C}.
16
Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18 19
Lemma fin_collection_finite X : set_finite X.
Proof. by exists (elements X); intros; rewrite elem_of_elements. Qed.
20
Global Instance elements_proper: Proper (() ==> ()) (elements (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
21 22
Proof.
  intros ?? E. apply NoDup_Permutation.
23 24 25
  - apply NoDup_elements.
  - apply NoDup_elements.
  - intros. by rewrite !elem_of_elements, E.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Qed.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Lemma elements_empty : elements ( : C) = [].
Proof.
  apply elem_of_nil_inv; intros x.
  rewrite elem_of_elements, elem_of_empty; tauto.
Qed.
Lemma elements_union_singleton (X : C) x :
  x  X  elements ({[ x ]}  X)  x :: elements X.
Proof.
  intros ?; apply NoDup_Permutation.
  { apply NoDup_elements. }
  { by constructor; rewrite ?elem_of_elements; try apply NoDup_elements. }
  intros y; rewrite elem_of_elements, elem_of_union, elem_of_singleton.
  by rewrite elem_of_cons, elem_of_elements.
Qed.
Lemma elements_singleton x : elements {[ x ]} = [x].
Proof.
  apply Permutation_singleton. by rewrite <-(right_id  () {[x]}),
    elements_union_singleton, elements_empty by solve_elem_of.
Qed.
Lemma elements_contains X Y : X  Y  elements X `contains` elements Y.
Proof.
  intros; apply NoDup_contains; auto using NoDup_elements.
  intros x. rewrite !elem_of_elements; auto.
Qed.

52
Global Instance collection_size_proper: Proper (() ==> (=)) (@size C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
Lemma size_empty : size ( : C) = 0.
55
Proof. unfold size, collection_size. simpl. by rewrite elements_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57
Lemma size_empty_inv (X : C) : size X = 0  X  .
Proof.
58 59
  intros; apply equiv_empty; intros x; rewrite <-elem_of_elements.
  by rewrite (nil_length_inv (elements X)), ?elem_of_nil.
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61
Qed.
Lemma size_empty_iff (X : C) : size X = 0  X  .
62
Proof. split. apply size_empty_inv. by intros ->; rewrite size_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63 64 65
Lemma size_non_empty_iff (X : C) : size X  0  X  .
Proof. by rewrite size_empty_iff. Qed.
Lemma size_singleton (x : A) : size {[ x ]} = 1.
66
Proof. unfold size, collection_size. simpl. by rewrite elements_singleton. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68 69
Lemma size_singleton_inv X x y : size X = 1  x  X  y  X  x = y.
Proof.
  unfold size, collection_size. simpl. rewrite <-!elem_of_elements.
70
  generalize (elements X). intros [|? l]; intro; simplify_eq/=.
71
  rewrite (nil_length_inv l), !elem_of_list_singleton by done; congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74 75
Qed.
Lemma collection_choose_or_empty X : ( x, x  X)  X  .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
76 77
  - apply equiv_empty; intros x. by rewrite <-elem_of_elements, HX, elem_of_nil.
  - exists x. rewrite <-elem_of_elements, HX. by left.
Robbert Krebbers's avatar
Robbert Krebbers committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91
Qed.
Lemma collection_choose X : X     x, x  X.
Proof. intros. by destruct (collection_choose_or_empty X). Qed.
Lemma collection_choose_L `{!LeibnizEquiv C} X : X     x, x  X.
Proof. unfold_leibniz. apply collection_choose. Qed.
Lemma size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (collection_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, size_empty; lia.
Qed.
Lemma size_1_elem_of X : size X = 1   x, X  {[ x ]}.
Proof.
  intros E. destruct (size_pos_elem_of X); auto with lia.
  exists x. apply elem_of_equiv. split.
92 93
  - rewrite elem_of_singleton. eauto using size_singleton_inv.
  - solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98
Qed.
Lemma size_union X Y : X  Y    size (X  Y) = size X + size Y.
Proof.
  intros [E _]. unfold size, collection_size. simpl. rewrite <-app_length.
  apply Permutation_length, NoDup_Permutation.
99 100
  - apply NoDup_elements.
  - apply NoDup_app; repeat split; try apply NoDup_elements.
101
    intros x; rewrite !elem_of_elements; solve_elem_of.
102
  - intros. by rewrite elem_of_app, !elem_of_elements, elem_of_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104 105 106 107 108 109 110
Qed.
Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
Proof.
  refine (cast_if (decide_rel () x (elements X)));
    by rewrite <-(elem_of_elements _).
Defined.
Global Program Instance collection_subseteq_dec_slow (X Y : C) :
    Decision (X  Y) | 100 :=
111 112
  match decide_rel (=) (size (X  Y)) 0 return _ with
  | left _ => left _ | right _ => right _
Robbert Krebbers's avatar
Robbert Krebbers committed
113 114
  end.
Next Obligation.
115
  intros X Y E1 x ?; apply dec_stable; intro. destruct (proj1(elem_of_empty x)).
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118
  apply (size_empty_inv _ E1). by rewrite elem_of_difference.
Qed.
Next Obligation.
119
  intros X Y E1 E2; destruct E1. apply size_empty_iff, equiv_empty. intros x.
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123 124
  rewrite elem_of_difference. intros [E3 ?]. by apply E2 in E3.
Qed.
Lemma size_union_alt X Y : size (X  Y) = size X + size (Y  X).
Proof.
  rewrite <-size_union by solve_elem_of.
125
  setoid_replace (Y  X) with ((Y  X)  X) by solve_elem_of.
126
  rewrite <-union_difference, (comm ()); solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
Qed.
Lemma subseteq_size X Y : X  Y  size X  size Y.
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Lemma subset_size X Y : X  Y  size X < size Y.
Proof.
  intros. rewrite (union_difference X Y) by solve_elem_of.
  rewrite size_union_alt, difference_twice.
  cut (size (Y  X)  0); [lia |].
  by apply size_non_empty_iff, non_empty_difference.
Qed.
Lemma collection_wf : wf (strict (@subseteq C _)).
Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed.
Lemma collection_ind (P : C  Prop) :
  Proper (() ==> iff) P 
  P   ( x X, x  X  P X  P ({[ x ]}  X))   X, P X.
Proof.
  intros ? Hemp Hadd. apply well_founded_induction with ().
  { apply collection_wf. }
  intros X IH. destruct (collection_choose_or_empty X) as [[x ?]|HX].
146
  - rewrite (union_difference {[ x ]} X) by solve_elem_of.
147
    apply Hadd. solve_elem_of. apply IH; solve_elem_of.
148
  - by rewrite HX.
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150 151 152 153 154 155 156 157 158 159
Qed.
Lemma collection_fold_ind {B} (P : B  C  Prop) (f : A  B  B) (b : B) :
  Proper ((=) ==> () ==> iff) P 
  P b   ( x X r, x  X  P r X  P (f x r) ({[ x ]}  X)) 
   X, P (collection_fold f b X) X.
Proof.
  intros ? Hemp Hadd.
  cut ( l, NoDup l   X, ( x, x  X  x  l)  P (foldr f b l) X).
  { intros help ?. apply help; [apply NoDup_elements|].
    symmetry. apply elem_of_elements. }
  induction 1 as [|x l ?? IH]; simpl.
160
  - intros X HX. setoid_rewrite elem_of_nil in HX.
161
    rewrite equiv_empty. done. solve_elem_of.
162
  - intros X HX. setoid_rewrite elem_of_cons in HX.
163 164
    rewrite (union_difference {[ x ]} X) by solve_elem_of.
    apply Hadd. solve_elem_of. apply IH. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
165 166 167 168
Qed.
Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
    (f : A  B  B) (b : B) `{!Proper ((=) ==> R ==> R) f}
    (Hf :  a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
169
  Proper (() ==> R) (collection_fold f b : C  B).
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
Global Instance set_Forall_dec `(P : A  Prop)
  `{ x, Decision (P x)} X : Decision (set_Forall P X) | 100.
Proof.
  refine (cast_if (decide (Forall P (elements X))));
    abstract (unfold set_Forall; setoid_rewrite <-elem_of_elements;
      by rewrite <-Forall_forall).
Defined.
Global Instance set_Exists_dec `(P : A  Prop) `{ x, Decision (P x)} X :
  Decision (set_Exists P X) | 100.
Proof.
  refine (cast_if (decide (Exists P (elements X))));
    abstract (unfold set_Exists; setoid_rewrite <-elem_of_elements;
      by rewrite <-Exists_exists).
Defined.
Global Instance rel_elem_of_dec `{ x y, Decision (R x y)} x X :
  Decision (elem_of_upto R x X) | 100 := decide (set_Exists (R x) X).
End fin_collection.