ofe.v 48.1 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5
6
7
8
9
10
11
12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16
17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20
21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26
27
28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32
33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

Ralf Jung's avatar
Ralf Jung committed
36
37
38
39
40
41
42
43
Section mixin.
  Local Set Primitive Projections.
  Record OfeMixin A `{Equiv A, Dist A} := {
    mixin_equiv_dist x y : x  y   n, x {n} y;
    mixin_dist_equivalence n : Equivalence (dist n);
    mixin_dist_S n x y : x {S n} y  x {n} y
  }.
End mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45

(** Bundeled version *)
46
47
48
49
50
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
51
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
53
54
55
56
57
58
59
60
61
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

88
(** Lifting properties from the mixin *)
89
90
Section ofe_mixin.
  Context {A : ofeT}.
91
  Implicit Types x y : A.
92
  Lemma equiv_dist x y : x  y   n, x {n} y.
93
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
94
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
95
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
96
  Lemma dist_S n x y : x {S n} y  x {n} y.
97
98
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
99

Robbert Krebbers's avatar
Robbert Krebbers committed
100
101
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

102
103
104
105
106
107
108
(** Discrete OFEs and discrete OFE elements *)
Class Discrete {A : ofeT} (x : A) := discrete y : x {0} y  x  y.
Arguments discrete {_} _ {_} _ _.
Hint Mode Discrete + ! : typeclass_instances.
Instance: Params (@Discrete) 1.

Class OFEDiscrete (A : ofeT) := ofe_discrete_discrete (x : A) :> Discrete x.
109
Hint Mode OFEDiscrete ! : typeclass_instances.
110
111
112
113
114
115
116
117
118

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

119
Program Definition chain_map {A B : ofeT} (f : A  B)
120
    `{!NonExpansive f} (c : chain A) : chain B :=
121
122
123
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

124
125
126
127
128
129
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
130

131
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
132
133
134
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

135
136
137
138
139
140
141
142
Program Definition chain_const {A : ofeT} (a : A) : chain A :=
  {| chain_car n := a |}.
Next Obligation. by intros A a n i _. Qed.

Lemma compl_chain_const {A : ofeT} `{!Cofe A} (a : A) :
  compl (chain_const a)  a.
Proof. apply equiv_dist=>n. by rewrite conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
143
(** General properties *)
144
Section ofe.
145
  Context {A : ofeT}.
146
  Implicit Types x y : A.
147
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
148
149
  Proof.
    split.
150
151
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
152
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  Qed.
154
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
157
158
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  Qed.
160
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
163
164
165
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
166
167
  Global Instance Discrete_proper : Proper (() ==> iff) (@Discrete A).
  Proof. intros x y Hxy. rewrite /Discrete. by setoid_rewrite Hxy. Qed.
168

Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Proof. induction 2; eauto using dist_S. Qed.
171
172
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
173
174
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
176
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
179
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  Qed.
182

183
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
184
185
186
187
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
188

189
  Lemma discrete_iff n (x : A) `{!Discrete x} y : x  y  x {n} y.
190
  Proof.
191
    split; intros; auto. apply (discrete _), dist_le with n; auto with lia.
192
  Qed.
193
  Lemma discrete_iff_0 n (x : A) `{!Discrete x} y : x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
194
  Proof.
195
    split=> ?. by apply equiv_dist, (discrete _). eauto using dist_le with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  Qed.
197
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
198

199
(** Contractive functions *)
200
Definition dist_later `{Dist A} (n : nat) (x y : A) : Prop :=
201
  match n with 0 => True | S n => x {n} y end.
202
Arguments dist_later _ _ !_ _ _ /.
203

204
Global Instance dist_later_equivalence (A : ofeT) n : Equivalence (@dist_later A _ n).
205
206
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

207
208
209
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

210
211
212
213
214
215
216
217
218
219
220
Lemma dist_later_dist {A : ofeT} n (x y : A) : dist_later (S n) x y  dist n x y.
Proof. done. Qed.

(* We don't actually need this lemma (as our tactics deal with this through
   other means), but technically speaking, this is the reason why
   pre-composing a non-expansive function to a contractive function
   preserves contractivity. *)
Lemma ne_dist_later {A B : ofeT} (f : A  B) :
  NonExpansive f   n, Proper (dist_later n ==> dist_later n) f.
Proof. intros Hf [|n]; last exact: Hf. hnf. by intros. Qed.

221
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
222

223
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
224
225
Proof. by intros n y1 y2. Qed.

226
Section contractive.
227
  Local Set Default Proof Using "Type*".
228
229
230
231
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
232
  Proof. by apply (_ : Contractive f). Qed.
233
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
234
  Proof. intros. by apply (_ : Contractive f). Qed.
235

236
237
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
238
239
240
241
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

242
243
Ltac f_contractive :=
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
246
  | |- ?f _ {_} ?f _ => simple apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (_ ==> dist_later _ ==> _) f)
247
248
  end;
  try match goal with
249
  | |- @dist_later ?A _ ?n ?x ?y =>
250
         destruct n as [|n]; [exact I|change (@dist A _ n x y)]
251
  end;
Robbert Krebbers's avatar
Robbert Krebbers committed
252
  try simple apply reflexivity.
253

Robbert Krebbers's avatar
Robbert Krebbers committed
254
255
Ltac solve_contractive :=
  solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
256

Robbert Krebbers's avatar
Robbert Krebbers committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A  Prop) : Prop :=
  limit_preserving (c : chain A) : ( n, P (c n))  P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.

Section limit_preserving.
  Context `{Cofe A}.
  (* These are not instances as they will never fire automatically...
     but they can still be helpful in proving things to be limit preserving. *)

  Lemma limit_preserving_ext (P Q : A  Prop) :
    ( x, P x  Q x)  LimitPreserving P  LimitPreserving Q.
  Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed.

  Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
  Proof. intros c HP. apply (HP 0). Qed.

274
  Lemma limit_preserving_discrete (P : A  Prop) :
Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    Proper (dist 0 ==> impl) P  LimitPreserving P.
  Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.

  Lemma limit_preserving_and (P1 P2 : A  Prop) :
    LimitPreserving P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof. intros Hlim1 Hlim2 c Hc. split. apply Hlim1, Hc. apply Hlim2, Hc. Qed.

  Lemma limit_preserving_impl (P1 P2 : A  Prop) :
    Proper (dist 0 ==> impl) P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof.
    intros Hlim1 Hlim2 c Hc HP1. apply Hlim2=> n; apply Hc.
    eapply Hlim1, HP1. apply dist_le with n; last lia. apply (conv_compl n).
  Qed.

  Lemma limit_preserving_forall {B} (P : B  A  Prop) :
    ( y, LimitPreserving (P y)) 
    LimitPreserving (λ x,  y, P y x).
  Proof. intros Hlim c Hc y. by apply Hlim. Qed.
End limit_preserving.

Robbert Krebbers's avatar
Robbert Krebbers committed
297
(** Fixpoint *)
298
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
299
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Next Obligation.
301
  intros A ? f ? n.
302
  induction n as [|n IH]=> -[|i] //= ?; try omega.
303
304
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Qed.
306

307
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
308
  `{!Contractive f} : A := compl (fixpoint_chain f).
309
310
311
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
312
313

Section fixpoint.
314
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
315

316
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
317
  Proof.
318
319
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
320
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
  Qed.
322
323
324

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
325
326
327
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
328
329
  Qed.

330
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
331
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
332
  Proof.
333
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
334
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
335
336
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Qed.
338
339
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
341
342

  Lemma fixpoint_ind (P : A  Prop) :
343
    Proper (() ==> impl) P 
344
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
345
    LimitPreserving P 
346
347
348
349
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
Robbert Krebbers's avatar
Robbert Krebbers committed
350
351
    { intros n. rewrite /chcar. induction n as [|n IH]=> -[|i] //=;
        eauto using contractive_0, contractive_S with omega. }
352
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
Robbert Krebbers's avatar
Robbert Krebbers committed
353
354
355
356
    assert (f fp2  fp2).
    { apply equiv_dist=>n. rewrite /fp2 (conv_compl n) /= /chcar.
      induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. }
    rewrite -(fixpoint_unique fp2) //.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
    apply Hlim=> n /=. by apply Nat_iter_ind.
358
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
359
360
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
361

362
363
364
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
365

366
Section fixpointK.
367
  Local Set Default Proof Using "Type*".
368
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  Context {f_contractive : Contractive (Nat.iter k f)} {f_ne : NonExpansive f}.
  (* Note than f_ne is crucial here:  there are functions f such that f^2 is contractive,
     but f is not non-expansive.
     Consider for example f: SPred → SPred (where SPred is "downclosed sets of natural numbers").
     Define f (using informative excluded middle) as follows:
     f(N) = N  (where N is the set of all natural numbers)
     f({0, ..., n}) = {0, ... n-1}  if n is even (so n-1 is at least -1, in which case we return the empty set)
     f({0, ..., n}) = {0, ..., n+2} if n is odd
     In other words, if we consider elements of SPred as ordinals, then we decreaste odd finite
     ordinals by 1 and increase even finite ordinals by 2.
     f is not non-expansive:  Consider f({0}) = ∅ and f({0,1}) = f({0,1,2,3}).
     The arguments are clearly 0-equal, but the results are not.

     Now consider g := f^2. We have
     g(N) = N
     g({0, ..., n}) = {0, ... n+1}  if n is even
     g({0, ..., n}) = {0, ..., n+4} if n is odd
     g is contractive.  All outputs contain 0, so they are all 0-equal.
     Now consider two n-equal inputs. We have to show that the outputs are n+1-equal.
     Either they both do not contain n in which case they have to be fully equal and
     hence so are the results.  Or else they both contain n, so the results will
     both contain n+1, so the results are n+1-equal.
   *)
392
393

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
394
  Local Existing Instance f_proper.
395

396
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
397
  Proof.
398
399
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
400
401
  Qed.

402
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
403
  Proof.
404
405
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
406
407
  Qed.

408
  Section fixpointK_ne.
409
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
410
    Context {g_ne : NonExpansive g}.
411

412
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
413
    Proof.
414
415
416
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
417
418
    Qed.

419
420
421
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
422
423
424
425

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
426
    LimitPreserving P 
Ralf Jung's avatar
Ralf Jung committed
427
428
    P (fixpointK k f).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
    intros. rewrite /fixpointK. apply fixpoint_ind; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
    intros; apply Nat_iter_ind; auto.
Ralf Jung's avatar
Ralf Jung committed
431
  Qed.
432
End fixpointK.
433

Robbert Krebbers's avatar
Robbert Krebbers committed
434
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
435
Section fixpointAB.
436
437
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
479
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
480

Ralf Jung's avatar
Ralf Jung committed
481
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
513
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
514

515
(** Function space *)
516
(* We make [ofe_fun] a definition so that we can register it as a canonical
517
structure. *)
518
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
519

520
521
522
523
524
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
525
526
527
528
529
530
531
532
533
534
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
535
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
536

537
538
539
540
541
542
543
544
545
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
546
Notation "A -c> B" :=
547
548
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
549
550
  Inhabited (A -c> B) := populate (λ _, inhabitant).

551
(** Non-expansive function space *)
552
553
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
554
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
555
556
}.
Arguments CofeMor {_ _} _ {_}.
557
558
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
559

560
561
562
563
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

564
565
566
567
568
569
570
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
571
572
  Proof.
    split.
573
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
574
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
575
    - intros n; split.
576
577
      + by intros f x.
      + by intros f g ? x.
578
      + by intros f g h ?? x; trans (g x).
579
    - by intros n f g ? x; apply dist_S.
580
  Qed.
581
582
583
584
585
586
587
588
589
590
591
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
Jacques-Henri Jourdan's avatar
Typo    
Jacques-Henri Jourdan committed
592
  Global Program Instance ofe_mor_cofe `{Cofe B} : Cofe ofe_morC :=
593
594
595
596
597
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
598

599
600
601
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
602
603
604
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
605
  Proof. done. Qed.
606
End ofe_mor.
607

608
Arguments ofe_morC : clear implicits.
609
Notation "A -n> B" :=
610
611
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
612
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
613

614
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
615
616
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
617
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
618
Instance: Params (@cconst) 2.
619

Robbert Krebbers's avatar
Robbert Krebbers committed
620
621
622
623
624
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
625
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
626
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
627

Ralf Jung's avatar
Ralf Jung committed
628
(* Function space maps *)
629
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
630
  (h : A -n> B) : A' -n> B' := g  h  f.
631
632
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
633
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
634

635
636
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
637
638
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
639
Proof.
640
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
641
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
642
643
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
644
(** unit *)
645
646
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
647
  Definition unit_ofe_mixin : OfeMixin unit.
648
  Proof. by repeat split; try exists 0. Qed.
649
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
650

651
652
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
653

654
  Global Instance unit_ofe_discrete : OFEDiscrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
655
  Proof. done. Qed.
656
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
657
658

(** Product *)
659
Section product.
660
  Context {A B : ofeT}.
661
662
663

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
664
665
666
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
667
  Definition prod_ofe_mixin : OfeMixin (A * B).
668
669
  Proof.
    split.
670
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
671
      rewrite !equiv_dist; naive_solver.
672
673
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
674
  Qed.
675
676
677
678
679
680
681
682
683
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

684
685
686
  Global Instance prod_discrete (x : A * B) :
    Discrete (x.1)  Discrete (x.2)  Discrete x.
  Proof. by intros ???[??]; split; apply (discrete _). Qed.
687
  Global Instance prod_ofe_discrete : OFEDiscrete A  OFEDiscrete B  OFEDiscrete prodC.
688
  Proof. intros ?? [??]; apply _. Qed.
689
690
691
692
693
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

694
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
695
696
697
698
699
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
700
701
702
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
703

704
705
(** Functors *)
Structure cFunctor := CFunctor {
706
  cFunctor_car : ofeT  ofeT  ofeT;
707
708
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
709
710
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
711
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
712
713
714
715
716
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
717
Existing Instance cFunctor_ne.
718
719
Instance: Params (@cFunctor_map) 5.

720
721
722
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

723
724
725
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

726
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
727
728
Coercion cFunctor_diag : cFunctor >-> Funclass.

729
Program Definition constCF (B : ofeT) : cFunctor :=
730
731
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
732
Coercion constCF : ofeT >-> cFunctor.
733

734
Instance constCF_contractive B : cFunctorContractive (constCF B).
735
Proof. rewrite /cFunctorContractive; apply _. Qed.
736
737
738
739

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
740
Notation "∙" := idCF : cFunctor_scope.
741

742
743
744
745
746
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
747
748
749
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
750
751
752
753
754
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
755
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
756

757
758
759
760
761
762
763
764
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

765
766
767
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
768

769
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
770
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
771
772
773
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
774

775
776
777
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
778
779
|}.
Next Obligation.
780
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
781
782
783
784
785
786
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
787
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
788

789
790
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
791
792
Proof.
  intros ?? A1 A2 B1 B2 n ???;
793
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
794
795
Qed.

796
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
797
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
798
  cFunctor_map A1 A2 B1 B2 fg :=
799
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
800
|}.
801
802
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
803
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
804
Qed