sts.v 18.3 KB
Newer Older
1
2
3
From iris.prelude Require Export sets.
From iris.algebra Require Export cmra.
From iris.algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Ralf Jung's avatar
Ralf Jung committed
6
Local Arguments core _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11
12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
19
20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
29
     (* TODO: This asks for ⊥ on sets: T1 ⊥ T2 := T1 ∩ T2 ⊆ ∅. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
30
     prim_step s1 s2  tok s1  T1    tok s2  T2   
Ralf Jung's avatar
Ralf Jung committed
31
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
34
  | Frame_step T1 T2 :
35
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
36
37
38

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
39
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
Definition up (s : state sts) (T : tokens sts) : states sts :=
43
  {[ s' | rtc (frame_step T) s s' ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
45
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
46

Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
(** Tactic setup *)
Hint Resolve Step.
49
50
51
52
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
55
56
57
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
58
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
59
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
Ralf Jung's avatar
Ralf Jung committed
61
Proof. by intros ?? [??] ??????; split; apply framestep_mono. Qed.
62
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof.
64
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
68
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof.
71
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
73
  eapply elem_of_mkSet, rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
76
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
78
79
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
80
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Ralf Jung's avatar
Ralf Jung committed
81
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
86
87
88
89

(** ** Properties of closure under frame steps *)
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
90
  closed S1 T1  closed S2 T2  closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
91
Proof.
92
  intros [? Hstep1] [? Hstep2]; split; [set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
94
95
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99
100
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  s2  S  T2  Tf    tok s2  T2  .
Proof.
101
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep]??; split_and?; auto.
102
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
103
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
Qed.
105
106
107
108
Lemma steps_closed s1 s2 T1 T2 S Tf :
  steps (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  tok s1  T1    s2  S  T2  Tf    tok s2  T2  .
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
110
111
112
113
  remember (s1,T1) as sT1 eqn:HsT1; remember (s2,T2) as sT2 eqn:HsT2.
  intros Hsteps; revert s1 T1 HsT1 s2 T2 HsT2.
  induction Hsteps as [?|? [s2 T2] ? Hstep Hsteps IH];
     intros s1 T1 HsT1 s2' T2' ?????; simplify_eq; first done.
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); eauto.
114
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
116

(** ** Properties of the closure operators *)
117
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Proof. constructor. Qed.
119
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
121
122
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
123
Lemma closed_up_set S T :
124
  ( s, s  S  tok s  T  )  closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Proof.
126
  intros HS; unfold up_set; split.
127
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
128
    specialize (HS s' Hs'); clear Hs' S.
129
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
131
  - intros s1 s2; rewrite /up; set_unfold; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
    split; [eapply rtc_r|]; eauto.
Qed.
134
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Proof.
136
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
137
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Qed.
139
140
Lemma closed_up_set_empty S : closed (up_set S ) .
Proof. eauto using closed_up_set with sts. Qed.
141
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Proof. eauto using closed_up with sts. Qed.
143
Lemma up_set_empty S T : up_set S T    S  .
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
Proof. move:(subseteq_up_set S T). set_solver. Qed.
Lemma up_set_non_empty S T : S    up_set S T  .
146
Proof. by move=>? /up_set_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
Lemma up_non_empty s T : up s T  .
Proof. eapply non_empty_inhabited, elem_of_up. Qed.
149
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
Proof.
151
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
153
154
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
157
158
159
160
161
162
Lemma up_subseteq s T S : closed S T  s  S  sts.up s T  S.
Proof. move=> ?? s' ?. eauto using closed_steps. Qed.
Lemma up_set_subseteq S1 T S2 : closed S2 T  S1  S2  sts.up_set S1 T  S2.
Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End sts.

Notation steps := (rtc step).
End sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
(* This module should never be imported, uses the module [sts] below. *)
Module sts_dra.
Import sts.

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.

Section sts_dra.
Context {sts : stsT}.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
188
189
Global Existing Instance sts_equiv.
Global Instance sts_valid : Valid (car sts) := λ x,
190
191
  match x with
  | auth s T => tok s  T  
Robbert Krebbers's avatar
Robbert Krebbers committed
192
193
  | frag S' T => closed S' T  S'  
  end.
Ralf Jung's avatar
Ralf Jung committed
194
Global Instance sts_core : Core (car sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
195
196
197
198
199
200
201
202
203
204
205
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
     S1  S2    T1  T2    frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 :
     s  S  T1  T2    auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 :
     s  S  T1  T2    frag S T1  auth s T2.
206
207
Global Existing Instance sts_disjoint.
Global Instance sts_op : Op (car sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
208
209
210
211
212
213
214
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
219
Global Instance sts_equivalence: Equivalence (() : relation (car sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
220
221
Proof.
  split.
222
223
  - by intros []; constructor.
  - by destruct 1; constructor.
224
  - destruct 1; inversion_clear 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
225
226
Qed.
Global Instance sts_dra : DRA (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
227
228
Proof.
  split.
229
230
231
232
233
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
234
  - destruct 3; simpl in *; destruct_and?; eauto using closed_op;
235
      match goal with H : closed _ _ |- _ => destruct H end; set_solver.
236
  - intros []; simpl; intros; destruct_and?; split;
Robbert Krebbers's avatar
Robbert Krebbers committed
237
      eauto using closed_up, up_non_empty, closed_up_set, up_set_empty with sts.
238
239
240
241
242
243
244
245
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
  - intros [|S T]; constructor; auto with sts.
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
247
    + rewrite (up_closed (up_set _ _)); eauto using closed_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
248
249
250
  - intros x y. exists (core (x  y))=> ?? Hxy; split_and?.
    + destruct Hxy; constructor; unfold up_set; set_solver.
    + destruct Hxy; simpl; split_and?;
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
        auto using closed_up_set_empty, closed_up_empty, up_non_empty; [].
      apply up_set_non_empty. set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
    + destruct Hxy; constructor;
254
        repeat match goal with
255
256
257
258
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
259
        end; auto with sts.
260
Qed.
261
Canonical Structure R : cmraT := validityR (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
264
265
End sts_dra. End sts_dra.

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
266
Notation stsR := (@sts_dra.R).
Robbert Krebbers's avatar
Robbert Krebbers committed
267
268
269

Section sts_definitions.
  Context {sts : stsT}.
270
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
271
    to_validity (sts_dra.auth s T).
272
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
273
    to_validity (sts_dra.frag S T).
274
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
278
279
280
281
282
283
284
285
286
287
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

288
Global Instance sts_cmra_discrete : CMRADiscrete (stsR sts).
289
290
Proof. apply validity_cmra_discrete. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
291
292
293
294
295
296
297
(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
Proof. (* this proof is horrible *)
  intros T1 T2 HT. rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Qed.
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
300
  intros S1 S2 ? T1 T2 HT; rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
303
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
Proof. intros T1 T2 HT. by rewrite /sts_frag_up HT. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304

Robbert Krebbers's avatar
Robbert Krebbers committed
305
306
(** Validity *)
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T  .
307
Proof. done. Qed.
308
Lemma sts_frag_valid S T :  sts_frag S T  closed S T  S  .
309
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
Lemma sts_frag_up_valid s T : tok s  T     sts_frag_up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
Proof. intros. by apply sts_frag_valid; auto using closed_up, up_non_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
312

Robbert Krebbers's avatar
Robbert Krebbers committed
313
314
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
315
Proof. by intros (?&?&Hdisj); inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
316

Robbert Krebbers's avatar
Robbert Krebbers committed
317
318
319
320
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
321
  intros; split; [split|constructor; set_solver]; simpl.
322
  - intros (?&?&?); by apply closed_disjoint with S.
323
  - intros; split_and?; last constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
325
Qed.
Lemma sts_op_auth_frag_up s T :
326
327
328
  sts_auth s   sts_frag_up s T  sts_auth s T.
Proof.
  intros; split; [split|constructor; set_solver]; simpl.
329
  - intros (?&[??]&?). by apply closed_disjoint with (up s T), elem_of_up.
330
331
332
  - intros; split_and?.
    + set_solver+.
    + by apply closed_up.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
    + apply up_non_empty.
334
335
    + constructor; last set_solver. apply elem_of_up.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336

Ralf Jung's avatar
Ralf Jung committed
337
Lemma sts_op_frag S1 S2 T1 T2 :
338
  T1  T2    sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
339
340
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
341
342
  intros HT HS1 HS2. rewrite /sts_frag.
  (* FIXME why does rewrite not work?? *)
343
344
345
  etrans; last eapply to_validity_op; first done; [].
  move=>/=[??]. split_and!; [auto; set_solver..|].
  constructor; done.
Ralf Jung's avatar
Ralf Jung committed
346
347
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
348
349
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
350
  steps (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
Proof.
352
  intros ?; apply validity_update.
353
  inversion 3 as [|? S ? Tf|]; simplify_eq/=; destruct_and?.
354
  destruct (steps_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto; [].
355
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
356
Qed.
Ralf Jung's avatar
Ralf Jung committed
357

358
359
Lemma sts_update_frag S1 S2 T1 T2 :
  closed S2 T2  S1  S2  T2  T1  sts_frag S1 T1 ~~> sts_frag S2 T2.
360
Proof.
361
  rewrite /sts_frag=> ? HS HT. apply validity_update.
362
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
363
364
  - split_and!; first done; first set_solver. constructor; set_solver.
  - split_and!; first done; first set_solver. constructor; set_solver.
365
366
Qed.

367
368
Lemma sts_update_frag_up s1 S2 T1 T2 :
  closed S2 T2  s1  S2  T2  T1  sts_frag_up s1 T1 ~~> sts_frag S2 T2.
Ralf Jung's avatar
Ralf Jung committed
369
Proof.
370
371
  intros ? ? HT; apply sts_update_frag; [intros; eauto using closed_steps..].
  rewrite <-HT. eapply up_subseteq; done.
Robbert Krebbers's avatar
Robbert Krebbers committed
372
373
Qed.

374
375
376
377
378
Lemma up_set_intersection S1 Sf Tf :
  closed Sf Tf  
  S1  Sf  S1  up_set (S1  Sf) Tf.
Proof.
  intros Hclf. apply (anti_symm ()).
379
380
381
  + move=>s [HS1 HSf]. split. by apply HS1. by apply subseteq_up_set.
  + move=>s [HS1 [s' [/elem_of_mkSet Hsup Hs']]]. split; first done.
    eapply closed_steps, Hsup; first done. set_solver +Hs'.
382
383
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
384
(** Inclusion *)
385
386
387
(* This is surprisingly different from to_validity_included. I am not sure
   whether this is because to_validity_included is non-canonical, or this
   one here is non-canonical - but I suspect both. *)
388
(*
Robbert Krebbers's avatar
Robbert Krebbers committed
389
Lemma sts_frag_included S1 S2 T1 T2 :
390
391
392
393
394
  closed S2 T2 → S2 ≢ ∅ →
  (sts_frag S1 T1 ≼ sts_frag S2 T2) ↔
  (closed S1 T1 ∧ S1 ≢ ∅ ∧ ∃ Tf, T2 ≡ T1 ∪ Tf ∧ T1 ∩ Tf ≡ ∅ ∧
                                 S2 ≡ S1 ∩ up_set S2 Tf).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
395
  intros ??; split.
396
  - intros [[???] ?].
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  destruct (to_validity_included (sts_dra.car sts) (sts_dra.frag S1 T1) (sts_dra.frag S2 T2)) as [Hfincl Htoincl].
  intros Hcl2 HS2ne. split.
  - intros Hincl. destruct Hfincl as ((Hcl1 & ?) & (z & EQ & Hval & Hdisj)).
    { split; last done. split; done. }
    clear Htoincl. split_and!; try done; [].
    destruct z as [sf Tf|Sf Tf].
    { exfalso. inversion_clear EQ. }
    exists Tf. inversion_clear EQ as [|? ? ? ? HT2 HS2].
    inversion_clear Hdisj as [? ? ? ? _ HTdisj | |]. split_and!; [done..|].
    rewrite HS2. apply up_set_intersection. apply Hval.
  - intros (Hcl & Hne & (Tf & HT & HTdisj & HS)). destruct Htoincl as ((Hcl' & ?) & (z & EQ)); last first.
    { exists z. exact EQ. } clear Hfincl.
    split; first (split; done). exists (sts_dra.frag (up_set S2 Tf) Tf). split_and!.
    + constructor; done.
    + simpl. split.
      * apply closed_up_set. move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
        set_solver +HT.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
      * by apply up_set_non_empty.
415
    + constructor; last done. by rewrite -HS.
416
417
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
418
Lemma sts_frag_included' S1 S2 T :
419
  closed S2 T → closed S1 T → S2 ≢ ∅ → S1 ≢ ∅ → S2 ≡ S1 ∩ up_set S2 ∅ →
Robbert Krebbers's avatar
Robbert Krebbers committed
420
  sts_frag S1 T ≼ sts_frag S2 T.
421
Proof.
422
423
  intros. apply sts_frag_included; split_and?; auto.
  exists ∅; split_and?; done || set_solver+.
424
Qed. *)
425
End stsRA.
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

(** STSs without tokens: Some stuff is simpler *)
Module sts_notok.
Structure stsT := STS {
  state : Type;
  prim_step : relation state;
}.
Arguments STS {_} _.
Arguments prim_step {_} _ _.
Notation states sts := (set (state sts)).

Canonical sts_notok (sts : stsT) : sts.stsT :=
  sts.STS (token:=Empty_set) (@prim_step sts) (λ _, ).

Section sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Notation prim_steps := (rtc prim_step).

Lemma sts_step s1 s2 :
  prim_step s1 s2  sts.step (s1, ) (s2, ).
Proof.
  intros. split; set_solver.
Qed.

Lemma sts_steps s1 s2 :
  prim_steps s1 s2  sts.steps (s1, ) (s2, ).
Proof.
  induction 1; eauto using sts_step, rtc_refl, rtc_l.
Qed.

Lemma frame_prim_step T s1 s2 :
  sts.frame_step T s1 s2  prim_step s1 s2.
Proof.
  inversion 1 as [??? Hstep]. inversion_clear Hstep. done.
Qed.

Lemma prim_frame_step T s1 s2 :
  prim_step s1 s2  sts.frame_step T s1 s2.
Proof.
  intros Hstep. apply sts.Frame_step with  ; first set_solver.
  by apply sts_step.
Qed.

Lemma mk_closed S :
  ( s1 s2, s1  S  prim_step s1 s2  s2  S)  sts.closed S .
Proof.
  intros ?. constructor; first by set_solver.
  intros ????. eauto using frame_prim_step.
Qed.

End sts.
Notation steps := (rtc prim_step).
End sts_notok.

Coercion sts_notok.sts_notok : sts_notok.stsT >-> sts.stsT.
Notation sts_notokT := sts_notok.stsT.
Notation STS_NoTok := sts_notok.STS.

Section sts_notokRA.
Import sts_notok.
Context {sts : sts_notokT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Lemma sts_notok_update_auth s1 s2 :
  rtc prim_step s1 s2  sts_auth s1  ~~> sts_auth s2 .
Proof.
  intros. by apply sts_update_auth, sts_steps.
Qed.

End sts_notokRA.