tests.v 4.73 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
(** This file is essentially a bunch of testcases. *)
2
3
4
Require Import modures.logic.
Require Import barrier.lifting.
Import uPred.
Ralf Jung's avatar
Ralf Jung committed
5
6

Module LangTests.
7
8
  Definition add :=  Plus (LitNat 21) (LitNat 21).
  Goal  σ, prim_step add σ (LitNat 42) σ None.
Ralf Jung's avatar
Ralf Jung committed
9
  Proof.
10
    constructor.
Ralf Jung's avatar
Ralf Jung committed
11
12
  Qed.

13
  Definition rec := Rec (App (Var 0) (Var 1)). (* fix f x => f x *)
14
  Definition rec_app := App rec (LitNat 0).
Ralf Jung's avatar
Ralf Jung committed
15
16
  Goal  σ, prim_step rec_app σ rec_app σ None.
  Proof.
17
    move=>?. eapply BetaS.
Ralf Jung's avatar
Ralf Jung committed
18
19
20
    reflexivity.
  Qed.

21
22
  Definition lam := Lam (Plus (Var 0) (LitNat 21)).
  Goal  σ, prim_step (App lam (LitNat 21)) σ add σ None.
Ralf Jung's avatar
Ralf Jung committed
23
24
25
26
27
28
29
30
  Proof.
    move=>?. eapply BetaS. reflexivity.
  Qed.
End LangTests.

Module ParamTests.
  Print Assumptions Σ.
End ParamTests.
31
32
33
34

Module LiftingTests.
  (* TODO RJ: Some syntactic sugar for language expressions would be nice. *)
  Definition e3 := Load (Var 0).
35
  Definition e2 := Seq (Store (Var 0) (Plus (Load $ Var 0) (LitNat 1))) e3.
36
37
38
39
  Definition e := Let (Alloc (LitNat 1)) e2.
  Goal  σ E, (ownP (Σ:=Σ) σ)  (wp (Σ:=Σ) E e (λ v, (v = LitNatV 2))).
  Proof.
    move=> σ E. rewrite /e.
40
    rewrite -wp_let. rewrite -wp_alloc_pst; last done.
41
42
43
    apply sep_intro_True_r; first done.
    rewrite -later_intro. apply forall_intro=>l.
    apply wand_intro_l. rewrite right_id. apply const_elim_l; move=>_.
44
    rewrite -later_intro. asimpl.
45
46
    rewrite -(wp_bind _ _ (SeqCtx (StoreRCtx (LocV _)
                                   (PlusLCtx EmptyCtx _)) (Load (Loc _)))).
47
48
49
    rewrite -wp_load_pst; first (apply sep_intro_True_r; first done); last first.
    { apply: lookup_insert. } (* RJ TODO: figure out why apply and eapply fail. *)
    rewrite -later_intro. apply wand_intro_l. rewrite right_id.
50
    rewrite -(wp_bind _ _ (SeqCtx (StoreRCtx (LocV _) EmptyCtx) (Load (Loc _)))).
Ralf Jung's avatar
Ralf Jung committed
51
    rewrite -wp_plus -later_intro.
52
    rewrite -(wp_bind _ _ (SeqCtx EmptyCtx (Load (Loc _)))).
53
54
55
56
    rewrite -wp_store_pst; first (apply sep_intro_True_r; first done); last first.
    { apply: lookup_insert. }
    { reflexivity. }
    rewrite -later_intro. apply wand_intro_l. rewrite right_id.
57
    rewrite -wp_lam // -later_intro. asimpl.
58
59
60
    rewrite -wp_load_pst; first (apply sep_intro_True_r; first done); last first.
    { apply: lookup_insert. }
    rewrite -later_intro. apply wand_intro_l. rewrite right_id.
61
62
    by apply const_intro.
  Qed.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

  Import Nat.

  Definition Lt e1 e2 := Le (Plus e1 $ LitNat 1) e2.
  Definition FindPred' n1 Sn1 n2 f := If (Lt Sn1 n2)
                                      (App f Sn1)
                                      n1.
  Definition FindPred n2 := Rec (Let (Plus (Var 1) (LitNat 1))
                                     (FindPred' (Var 2) (Var 0) n2.[ren(+3)] (Var 1))).
  Lemma FindPred_spec n1 n2 E Q :
    ((n1 < n2)  Q (LitNatV $ pred n2)) 
       wp (Σ:=Σ) E (App (FindPred (LitNat n2)) (LitNat n1)) Q.
  Proof.
    revert n1. apply löb_all_1=>n1.
    rewrite -wp_rec //. asimpl.
    (* Get rid of the ▷ in the premise. *)
    etransitivity; first (etransitivity; last eapply equiv_spec, later_and).
    { apply and_mono; first done. by rewrite -later_intro. }
    apply later_mono.
    (* Go on. *)
    rewrite -(wp_let _ (FindPred' (LitNat n1) (Var 0) (LitNat n2) (FindPred $ LitNat n2))).
    rewrite -wp_plus. asimpl.
    rewrite -(wp_bind _ _ (CaseCtx EmptyCtx _ _)).
    rewrite -(wp_bind _ _ (LeLCtx EmptyCtx _)).
    rewrite -wp_plus -!later_intro. simpl.
    assert (Decision (S n1 + 1  n2)) as Hn12 by apply _.
    destruct Hn12 as [Hle|Hgt].
    - rewrite -wp_le_true /= //. rewrite -wp_case_inl //.
      rewrite -!later_intro. asimpl.
      rewrite (forall_elim _ (S n1)).
      eapply impl_elim; first by eapply and_elim_l. apply and_intro.
      + apply const_intro; omega.
      + by rewrite !and_elim_r.
96
97
    - rewrite -wp_le_false /= // -wp_case_inr //.
      rewrite -!later_intro -wp_value' //.
98
      rewrite and_elim_r. apply const_elim_l=>Hle.
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
      assert (Heq: n1 = pred n2) by omega. by subst n1.
  Qed.

  Definition Pred := Lam (If (Le (Var 0) (LitNat 0))
                             (LitNat 0)
                             (App (FindPred (Var 0)) (LitNat 0))
                         ).
  Lemma Pred_spec n E Q :
    Q (LitNatV $ pred n)  wp (Σ:=Σ) E (App Pred (LitNat n)) Q.
  Proof.
    rewrite -wp_lam //. asimpl.
    rewrite -(wp_bind _ _ (CaseCtx EmptyCtx _ _)).
    assert (Decision (n  0)) as Hn by apply _.
    destruct Hn as [Hle|Hgt].
    - rewrite -wp_le_true /= //. rewrite -wp_case_inl //.
      apply later_mono. rewrite -!later_intro -wp_value' //.
      assert (Heq: n = 0) by omega. by subst n.
    - rewrite -wp_le_false /= // -wp_case_inr //.
      apply later_mono. rewrite -!later_intro -FindPred_spec. apply and_intro.
      + by apply const_intro; omega.
      + done.
120
  Qed.
121
End LiftingTests.