Commit 0158faa7 authored by Robbert Krebbers's avatar Robbert Krebbers

Renaming in prelude/list.

Rename:

- prefix_of -> prefix and suffix_of -> suffix because that saves keystrokes
  in lemma names. However, keep the infix notations with l1 `prefix_of` l2 and
  l1 `suffix_of` l2 because those are easier to read.
- change the notation l1 `sublist` l2 into l1 `sublist_of` l2 to be consistent.
- rename contains -> submseteq and use the notation ⊆+
parent 808b681c
......@@ -69,9 +69,9 @@ Proof.
apply Permutation_singleton. by rewrite <-(right_id () {[x]}),
elements_union_singleton, elements_empty by set_solver.
Qed.
Lemma elements_contains X Y : X Y elements X `contains` elements Y.
Lemma elements_submseteq X Y : X Y elements X + elements Y.
Proof.
intros; apply NoDup_contains; auto using NoDup_elements.
intros; apply NoDup_submseteq; auto using NoDup_elements.
intros x. rewrite !elem_of_elements; auto.
Qed.
......
......@@ -699,10 +699,10 @@ Proof.
by rewrite map_to_list_insert, map_to_list_empty by auto using lookup_empty.
Qed.
Lemma map_to_list_contains {A} (m1 m2 : M A) :
m1 m2 map_to_list m1 `contains` map_to_list m2.
Lemma map_to_list_submseteq {A} (m1 m2 : M A) :
m1 m2 map_to_list m1 + map_to_list m2.
Proof.
intros; apply NoDup_contains; auto using NoDup_map_to_list.
intros; apply NoDup_submseteq; auto using NoDup_map_to_list.
intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
Lemma map_to_list_fmap {A B} (f : A B) m :
......
......@@ -107,17 +107,17 @@ Proof.
unfold card; intros. destruct finA as [[|x ?] ??]; simpl in *; [exfalso;lia|].
constructor; exact x.
Qed.
Lemma finite_inj_contains `{finA: Finite A} `{finB: Finite B} (f: A B)
`{!Inj (=) (=) f} : f <$> enum A `contains` enum B.
Lemma finite_inj_submseteq `{finA: Finite A} `{finB: Finite B} (f: A B)
`{!Inj (=) (=) f} : f <$> enum A + enum B.
Proof.
intros. destruct finA, finB. apply NoDup_contains; auto using NoDup_fmap_2.
intros. destruct finA, finB. apply NoDup_submseteq; auto using NoDup_fmap_2.
Qed.
Lemma finite_inj_Permutation `{Finite A} `{Finite B} (f : A B)
`{!Inj (=) (=) f} : card A = card B f <$> enum A enum B.
Proof.
intros. apply contains_Permutation_length_eq.
intros. apply submseteq_Permutation_length_eq.
- by rewrite fmap_length.
- by apply finite_inj_contains.
- by apply finite_inj_submseteq.
Qed.
Lemma finite_inj_surj `{Finite A} `{Finite B} (f : A B)
`{!Inj (=) (=) f} : card A = card B Surj (=) f.
......@@ -144,7 +144,7 @@ Proof.
destruct (finite_surj A B) as (g&?); auto with lia.
destruct (surj_cancel g) as (f&?). exists f. apply cancel_inj.
- intros [f ?]. unfold card. rewrite <-(fmap_length f).
by apply contains_length, (finite_inj_contains f).
by apply submseteq_length, (finite_inj_submseteq f).
Qed.
Lemma finite_bijective A `{Finite A} B `{Finite B} :
card A = card B f : A B, Inj (=) (=) f Surj (=) f.
......
......@@ -345,14 +345,14 @@ Proof.
Qed.
(* Mononicity *)
Lemma gmultiset_elements_contains X Y : X Y elements X `contains` elements Y.
Lemma gmultiset_elements_submseteq X Y : X Y elements X + elements Y.
Proof.
intros ->%gmultiset_union_difference. rewrite gmultiset_elements_union.
by apply contains_inserts_r.
by apply submseteq_inserts_r.
Qed.
Lemma gmultiset_subseteq_size X Y : X Y size X size Y.
Proof. intros. by apply contains_length, gmultiset_elements_contains. Qed.
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Lemma gmultiset_subset_size X Y : X Y size X < size Y.
Proof.
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment