collections.v 47.1 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7 8
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
9

10 11
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
12 13
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
14 15 16
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
17

18 19
(** * Setoids *)
Section setoids_simple.
20
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22
  Global Instance collection_equivalence : Equivalence (@{C}).
23
  Proof.
24 25 26 27
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
28
  Qed.
29
  Global Instance singleton_proper : Proper ((=) ==> (@{C})) singleton.
30
  Proof. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Global Instance elem_of_proper : Proper ((=) ==> () ==> iff) (@{C}) | 5.
32 33
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
34
  Proof.
35
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
36
  Qed.
37
  Global Instance union_proper : Proper (() ==> () ==> (@{C})) union.
38
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
39
  Global Instance union_list_proper: Proper (() ==> (@{C})) union_list.
40
  Proof. by induction 1; simpl; try apply union_proper. Qed.
41
  Global Instance subseteq_proper : Proper ((@{C}) ==> (@{C}) ==> iff) ().
42 43 44 45 46 47 48
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
49

50 51
  (** * Setoids *)
  Global Instance intersection_proper :
52
    Proper (() ==> () ==> (@{C})) intersection.
53
  Proof.
54
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
55
  Qed.
56
  Global Instance difference_proper :
57
     Proper (() ==> () ==> (@{C})) difference.
58
  Proof.
59
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
60
  Qed.
61
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
62

63 64 65 66 67
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
68
  Proof.
69 70
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
71
  Qed.
72
  Global Instance collection_bind_proper {A B} :
73
    Proper (pointwise_relation _ () ==> () ==> ()) (@mbind M _ A B).
74 75
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
76
    by rewrite HX, (Hf z).
77 78 79 80 81 82 83
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
84

85 86 87 88 89
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

90 91 92
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
93
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
94
Arguments set_unfold _ _ {_} : assert.
95 96 97 98 99
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

100
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

147
  Global Instance set_unfold_empty x : SetUnfold (x  ( : C)) False.
148
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
149
  Global Instance set_unfold_singleton x y : SetUnfold (x  ({[ y ]} : C)) (x = y).
150 151 152 153 154 155 156 157 158 159 160 161
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
162
    intros ?; constructor. unfold equiv, collection_equiv.
163
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
164
  Qed.
165
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) X :
166
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
167 168
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
169
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
170
  Qed.
171
  Global Instance set_unfold_equiv (P Q : A  Prop) X :
172 173
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
174
  Proof. constructor. apply forall_proper; naive_solver. Qed.
175
  Global Instance set_unfold_subseteq (P Q : A  Prop) X Y :
176 177
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
178
  Proof. constructor. apply forall_proper; naive_solver. Qed.
179
  Global Instance set_unfold_subset (P Q : A  Prop) X :
180
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
181
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
182
  Proof.
183 184
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
185
  Qed.
186
  Global Instance set_unfold_disjoint (P Q : A  Prop) X Y :
Robbert Krebbers's avatar
Robbert Krebbers committed
187
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
188
    SetUnfold (X ## Y) ( x, P x  Q x  False).
189
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
190 191 192 193 194 195

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
196
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
197
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) X :
198
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
199
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
200
  Global Instance set_unfold_equiv_L (P Q : A  Prop) X Y :
201 202
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
203
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
204 205 206 207 208 209 210 211 212 213
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
214 215
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
216 217 218 219
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
220 221
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
222 223 224 225
  Qed.
End set_unfold.

Section set_unfold_monad.
226
  Context `{CollectionMonad M}.
227

228 229
  Global Instance set_unfold_ret {A} (x y : A) :
    SetUnfold (x  mret (M:=M) y) (x = y).
230
  Proof. constructor; apply elem_of_ret. Qed.
231
  Global Instance set_unfold_bind {A B} (f : A  M B) X (P Q : A  Prop) :
232 233 234
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
235
  Global Instance set_unfold_fmap {A B} (f : A  B) (X : M A) (P : A  Prop) :
236 237 238
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
239
  Global Instance set_unfold_join {A} (X : M (M A)) (P : M A  Prop) :
240 241 242 243
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

269 270 271
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
272 273 274 275 276 277 278
    | H : ?P |- _ =>
       lazymatch type of P with
       | Prop =>
         apply set_unfold_1 in H; revert H;
         first [unfold_hyps; intros H | intros H; fail 1]
       | _ => fail
       end
279 280 281
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

282 283
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
284
Tactic Notation "set_solver" "by" tactic3(tac) :=
285
  try fast_done;
286 287 288 289 290 291 292 293 294 295 296 297 298
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

299 300 301 302
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

303

304 305
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
306
  Context `{SimpleCollection A C}.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
  Global Instance collection_subseteq_antisymm: AntiSymm () (() : relation C).
  Proof. intros ??. set_solver. Qed.

  Global Instance collection_subseteq_preorder: PreOrder (() : relation C).
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
344 345
  Lemma union_subseteq X Y Z : X  Y  Z  X  Z  Y  Z.
  Proof. set_solver. Qed.
346 347 348 349 350 351
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.
352
  Lemma union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
353
  Proof. set_solver. Qed.
354
  Lemma union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
355
  Proof. set_solver. Qed.
356
  Lemma union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
357 358
  Proof. set_solver. Qed.

359
  Global Instance union_idemp : IdemP (@{C}) ().
360
  Proof. intros X. set_solver. Qed.
361
  Global Instance union_empty_l : LeftId (@{C})  ().
362
  Proof. intros X. set_solver. Qed.
363
  Global Instance union_empty_r : RightId (@{C})  ().
364
  Proof. intros X. set_solver. Qed.
365
  Global Instance union_comm : Comm (@{C}) ().
366
  Proof. intros X Y. set_solver. Qed.
367
  Global Instance union_assoc : Assoc (@{C}) ().
368 369 370 371 372
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

373
  Lemma union_cancel_l X Y Z : Z ## X  Z ## Y  Z  X  Z  Y  X  Y.
374
  Proof. set_solver. Qed.
375
  Lemma union_cancel_r X Y Z : X ## Z  Y ## Z  X  Z  Y  Z  X  Y.
376 377
  Proof. set_solver. Qed.

378
  (** Empty *)
Robbert Krebbers's avatar
Robbert Krebbers committed
379 380
  Lemma empty_subseteq X :   X.
  Proof. set_solver. Qed.
381 382
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
383
  Lemma elem_of_empty x : x  ( : C)  False.
384 385 386 387 388 389 390 391 392 393 394
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
395
  Lemma elem_of_singleton_1 x y : x  ({[y]} : C)  x = y.
396
  Proof. by rewrite elem_of_singleton. Qed.
397
  Lemma elem_of_singleton_2 x y : x = y  x  ({[y]} : C).
398 399 400 401 402
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
403
  Lemma not_elem_of_singleton x y : x  ({[ y ]} : C)  x  y.
404 405 406
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
407
  Lemma elem_of_disjoint X Y : X ## Y   x, x  X  x  Y  False.
408 409 410 411
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros X Y. set_solver. Qed.
412
  Lemma disjoint_empty_l Y :  ## Y.
413
  Proof. set_solver. Qed.
414
  Lemma disjoint_empty_r X : X ## .
415
  Proof. set_solver. Qed.
416
  Lemma disjoint_singleton_l x Y : {[ x ]} ## Y  x  Y.
417
  Proof. set_solver. Qed.
418
  Lemma disjoint_singleton_r y X : X ## {[ y ]}  y  X.
419
  Proof. set_solver. Qed.
420
  Lemma disjoint_union_l X1 X2 Y : X1  X2 ## Y  X1 ## Y  X2 ## Y.
421
  Proof. set_solver. Qed.
422
  Lemma disjoint_union_r X Y1 Y2 : X ## Y1  Y2  X ## Y1  X ## Y2.
423 424 425 426
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
427 428
  Proof.
    split.
429 430
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
431
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
432
      intros. apply elem_of_union_r; auto.
433
  Qed.
434

435 436 437 438 439 440 441
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
442
  Proof.
443 444
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
445
  Qed.
446
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
447
  Proof.
448 449 450
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
451
  Qed.
452 453
  Lemma union_list_mono Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_mono. Qed.
454
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
455
  Proof.
456 457 458
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
459
  Qed.
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
    Global Instance collection_subseteq_partialorder :
      PartialOrder (() : relation C).
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
482
    Global Instance union_idemp_L : IdemP (=@{C}) ().
483
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
484
    Global Instance union_empty_l_L : LeftId (=@{C})  ().
485
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
486
    Global Instance union_empty_r_L : RightId (=@{C})  ().
487
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
488
    Global Instance union_comm_L : Comm (=@{C}) ().
489
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
490
    Global Instance union_assoc_L : Assoc (=@{C}) ().
491 492 493 494 495
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

496
    Lemma union_cancel_l_L X Y Z : Z ## X  Z ## Y  Z  X = Z  Y  X = Y.
497
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
498
    Lemma union_cancel_r_L X Y Z : X ## Z  Y ## Z  X  Z = Y  Z  X = Y.
499 500
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

501 502 503 504 505 506 507 508 509 510 511 512 513
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
514
    Lemma non_empty_singleton_L x : {[ x ]}  ( : C).
515 516 517 518 519 520 521 522 523 524 525 526 527 528
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
529
    Context `{!RelDecision (@{C})}.
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
554 555
Section collection.
  Context `{Collection A C}.
556
  Implicit Types x y : A.
557
  Implicit Types X Y : C.
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

574
  Lemma intersection_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
575
  Proof. set_solver. Qed.
576
  Lemma intersection_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
577
  Proof. set_solver. Qed.
578
  Lemma intersection_mono X1 X2 Y1 Y2 :
579
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
580
  Proof. set_solver. Qed.
581

582
  Global Instance intersection_idemp : IdemP (@{C}) ().
583
  Proof. intros X; set_solver. Qed.
584
  Global Instance intersection_comm : Comm (@{C}) ().
585
  Proof. intros X Y; set_solver. Qed.
586
  Global Instance intersection_assoc : Assoc (@{C}) ().
587
  Proof. intros X Y Z; set_solver. Qed.
588
  Global Instance intersection_empty_l : LeftAbsorb (@{C})  ().
589
  Proof. intros X; set_solver. Qed.
590
  Global Instance intersection_empty_r: RightAbsorb (@{C})  ().
591 592
  Proof. intros X; set_solver. Qed.

593
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
594
  Proof. set_solver. Qed.
595 596 597 598 599 600 601 602 603 604 605

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
606
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
607
  Proof. set_solver. Qed.
608
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
609
  Proof. set_solver. Qed.
610
  Lemma difference_diag X : X  X  .
611
  Proof. set_solver. Qed.
612 613
  Lemma difference_empty X : X    X.
  Proof. set_solver. Qed.
614
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
615
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
616
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
617
  Proof. set_solver. Qed.
618
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
619
  Proof. set_solver. Qed.
620
  Lemma difference_disjoint X Y : X ## Y  X  Y  X.
621
  Proof. set_solver. Qed.
622 623 624
  Lemma subset_difference_elem_of {x: A} {s: C} (inx: x  s): s  {[ x ]}  s.
  Proof. set_solver. Qed.

625

626
  Lemma difference_mono X1 X2 Y1 Y2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
627 628
    X1  X2  Y2  Y1  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.
629
  Lemma difference_mono_l X Y1 Y2 : Y2  Y1  X  Y1  X  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
  Proof. set_solver. Qed.
631
  Lemma difference_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
632 633
  Proof. set_solver. Qed.

634
  (** Disjointness *)
635
  Lemma disjoint_intersection X Y : X ## Y  X  Y  .
636 637
  Proof. set_solver. Qed.

638 639
  Section leibniz.
    Context `{!LeibnizEquiv C}.
640 641 642 643 644 645 646 647 648

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

649
    Global Instance intersection_idemp_L : IdemP (=@{C}) ().
650
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
651
    Global Instance intersection_comm_L : Comm (=@{C}) ().
652
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
653
    Global Instance intersection_assoc_L : Assoc (=@{C}) ().
654
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
655
    Global Instance intersection_empty_l_L: LeftAbsorb (=@{C})  ().
656
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
657
    Global Instance intersection_empty_r_L: RightAbsorb (=@{C})  ().
658 659
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

660
    Lemma intersection_singletons_L x : {[x]}  {[x]} = ({[x]} : C).
661
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
662 663 664 665 666

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
667
    Lemma intersection_union_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
668
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
669
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
670 671 672
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
673 674
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
675 676
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
677 678
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
679 680
    Lemma difference_empty_L X : X   = X.
    Proof. unfold_leibniz. apply difference_empty. Qed.
681 682
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
683 684
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
685 686 687
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
688
    Lemma difference_disjoint_L X Y : X ## Y  X  Y = X.
689
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
690 691

    (** Disjointness *)
692
    Lemma disjoint_intersection_L X Y : X ## Y  X  Y = .
693
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
694 695 696
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
697
    Context `{!RelDecision (@{C})}.
698
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
699
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
700
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
701
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
702 703
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
704
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
705
      destruct (decide (x  X)); intuition.
706
    Qed.
707 708 709 710 711
    Lemma difference_union X Y : X  Y  Y  X  Y.
    Proof.
      intros x. rewrite !elem_of_union; rewrite elem_of_difference.
      split; [ | destruct (decide (x  Y)) ]; intuition.
    Qed.
712
    Lemma subseteq_disjoint_union X Y : X  Y   Z, Y  X  Z  X ## Z.
713 714 715 716
    Proof.
      split; [|set_solver].
      exists (Y  X); split; [auto using union_difference|set_solver].
    Qed.
717
    Lemma non_empty_difference X Y : X  Y  Y  X  .
718
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
719
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
720
    Proof. set_solver. Qed.
721 722 723 724
    Lemma singleton_union_difference X Y x :
      {[x]}  (X  Y)  ({[x]}  X)  (Y  {[x]}).
    Proof.
      intro y; split; intros Hy; [ set_solver | ].
725
      destruct (decide (y  ({[x]} : C))); set_solver.
726
    Qed.
727

728 729 730
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
731 732
    Lemma difference_union_L X Y : X  Y  Y = X  Y.
    Proof. unfold_leibniz. apply difference_union. Qed.
733 734
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
735 736
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
737
    Lemma subseteq_disjoint_union_L X Y : X  Y   Z, Y = X  Z  X ## Z.
738
    Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
739 740 741
    Lemma singleton_union_difference_L X Y x :
      {[x]}  (X  Y) = ({[x]}  X)  (Y  {[x]}).
    Proof. unfold_leibniz. apply singleton_union_difference. Qed.
742 743 744
  End dec.
End collection.

745 746 747 748 749 750 751 752 753

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
754 755
  Implicit Types l : list A.

756
  Lemma elem_of_of_option (x : A) mx: x  of_option (C:=C) mx  mx = Some x.
757
  Proof. destruct mx; set_solver. Qed.
758
  Lemma not_elem_of_of_option (x : A) mx: x  of_option (C:=C) mx  mx  Some x.
759 760
  Proof. by rewrite elem_of_of_option. Qed.

761
  Lemma elem_of_of_list (x : A) l : x  of_list (C:=C) l  x  l.
762 763 764 765 766 767
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
768
  Lemma not_elem_of_of_list (x : A) l : x  of_list (C:=C) l  x  l.
769 770
  Proof. by rewrite elem_of_of_list. Qed.

771
  Global Instance set_unfold_of_option (mx : option A) x :
772
    SetUnfold (x  of_option (C:=C) mx) (mx = Some x).
773 774
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x P :
775
    SetUnfold (x  l) P  SetUnfold (x  of_list (C:=C) l) P.
776 777
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.

778
  Lemma of_list_nil : of_list [] =@{C} .
779
  Proof. done. Qed.
780
  Lemma of_list_cons x l : of_list (x :: l) =@{C} {[ x ]}  of_list l.
781
  Proof. done. Qed.
782
  Lemma of_list_app l1 l2 : of_list (l1 ++ l2) @{C} of_list l1  of_list l2.
783 784 785
  Proof. set_solver. Qed.
  Global Instance of_list_perm : Proper (() ==> ()) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
786

787
  Context `{!LeibnizEquiv C}.
788
  Lemma of_list_app_L l1 l2 : of_list (l1 ++ l2) =@{C} of_list l1  of_list l2.
789 790 791 792
  Proof. set_solver. Qed.
  Global Instance of_list_perm_L : Proper (() ==> (=)) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
End of_option_list.
793 794 795 796 797 798 799 800 801


(** * Guard *)
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
802
    (x  guard P; X)  P  x  X.
803 804 805 806 807 808 809
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
810
  Lemma guard_empty `{Decision P} {A} (X : M A) : (guard P; X)    ¬P  X  .
811 812 813 814
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
815
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) (X : M A) Q :
816 817 818 819 820 821 822 823
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof. set_solver. Qed.
End collection_monad_base.


824
(** * Quantifiers *)
825 826 827
Definition set_Forall `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.
Definition set_Exists `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.

Robbert Krebbers's avatar
Robbert Krebbers committed
828
Section quantifiers.
829 830
  Context `{SimpleCollection A C} (P : A  Prop).
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
831

832
  Lemma set_Forall_empty : set_Forall P ( : C).
833
  Proof. unfold set_Forall. set_solver. Qed.
834
  Lemma set_Forall_singleton x : set_Forall P ({[ x ]} : C)  P x.
835
  Proof. unfold set_Forall. set_solver. Qed.
836 837
  Lemma set_Forall_union X Y :
    set_Forall P X  set_Forall P Y  set_Forall P (X  Y).
838
  Proof. unfold set_Forall. set_solver. Qed.
839
  Lemma set_Forall_union_inv_1 X Y : set_Forall P (X  Y)  set_Forall P X.
840
  Proof. unfold set_Forall. set_solver. Qed.
841
  Lemma set_Forall_union_inv_2 X Y : set_Forall P (X  Y)  set_Forall P Y.
842
  Proof. unfold set_Forall. set_solver. Qed.
843

844
  Lemma set_Exists_empty : ¬set_Exists P ( : C).
845
  Proof. unfold set_Exists. set_solver. Qed.
846
  Lemma set_Exists_singleton x : set_Exists P ({[ x ]} : C)  P x.
847
  Proof. unfold set_Exists. set_solver. Qed.
848
  Lemma set_Exists_union_1 X Y : set_Exists P X  set_Exists P (X  Y).
849
  Proof. unfold set_Exists. set_solver. Qed.
850
  Lemma set_Exists_union_2 X Y : set_Exists P Y  set_Exists P (X  Y).
851
  Proof. unfold set_Exists. set_solver. Qed.
852
  Lemma set_Exists_union_inv X Y :
853
    set_Exists P (X  Y)  set_Exists P X  set_Exists P Y.
854
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
855 856
End quantifiers.

857
Section more_quantifiers.
858 859
  Context `{SimpleCollection A C}.
  Implicit Types X : C.
860

861 862
  Lemma set_Forall_impl (P Q : A  Prop) X :
    set_Forall P X  ( x, P x  Q x)  set_Forall Q X.
863
  Proof. unfold set_Forall. naive_solver. Qed.
864 865
  Lemma set_Exists_impl (P Q : A  Prop) X :
    set_Exists P X  ( x, P x  Q x)  set_Exists Q X.
866
  Proof. unfold set_Exists. naive_solver. Qed.
867 868
End more_quantifiers.

869 870 871
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
872 873 874 875 876 877
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
878 879
Instance: Params (@fresh_list) 6.

880 881 882 883
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
884