(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This files implements an efficient implementation of finite maps whose keys range over Coq's data type of positive binary naturals [positive]. The implementation is based on Xavier Leroy's implementation of radix-2 search trees (uncompressed Patricia trees) and guarantees logarithmic-time operations. However, we extend Leroy's implementation by packing the trees into a Sigma type such that canonicity of representation is ensured. This is necesarry for Leibniz equality to become extensional. *) From Coq Require Import PArith. From stdpp Require Import mapset countable. From stdpp Require Export fin_maps. Set Default Proof Using "Type*". Local Open Scope positive_scope. Local Hint Extern 0 (@eq positive _ _) => congruence. Local Hint Extern 0 (¬@eq positive _ _) => congruence. (** * The tree data structure *) (** The data type [Pmap_raw] specifies radix-2 search trees. These trees do not ensure canonical representations of maps. For example the empty map can be represented as a binary tree of an arbitrary size that contains [None] at all nodes. *) Inductive Pmap_raw (A : Type) : Type := | PLeaf: Pmap_raw A | PNode: option A → Pmap_raw A → Pmap_raw A → Pmap_raw A. Arguments PLeaf {_}. Arguments PNode {_} _ _ _. Instance Pmap_raw_eq_dec `{EqDecision A} : EqDecision (Pmap_raw A). Proof. solve_decision. Defined. Fixpoint Pmap_wf {A} (t : Pmap_raw A) : bool := match t with | PLeaf => true | PNode None PLeaf PLeaf => false | PNode _ l r => Pmap_wf l && Pmap_wf r end. Arguments Pmap_wf _ !_ / : simpl nomatch. Lemma Pmap_wf_l {A} o (l r : Pmap_raw A) : Pmap_wf (PNode o l r) → Pmap_wf l. Proof. destruct o, l, r; simpl; rewrite ?andb_True; tauto. Qed. Lemma Pmap_wf_r {A} o (l r : Pmap_raw A) : Pmap_wf (PNode o l r) → Pmap_wf r. Proof. destruct o, l, r; simpl; rewrite ?andb_True; tauto. Qed. Local Hint Immediate Pmap_wf_l Pmap_wf_r. Definition PNode' {A} (o : option A) (l r : Pmap_raw A) := match l, o, r with PLeaf, None, PLeaf => PLeaf | _, _, _ => PNode o l r end. Arguments PNode' _ _ _ _ : simpl never. Lemma PNode_wf {A} o (l r : Pmap_raw A) : Pmap_wf l → Pmap_wf r → Pmap_wf (PNode' o l r). Proof. destruct o, l, r; simpl; auto. Qed. Local Hint Resolve PNode_wf. (** Operations *) Instance Pempty_raw {A} : Empty (Pmap_raw A) := PLeaf. Instance Plookup_raw {A} : Lookup positive A (Pmap_raw A) := fix go (i : positive) (t : Pmap_raw A) {struct t} : option A := let _ : Lookup _ _ _ := @go in match t with | PLeaf => None | PNode o l r => match i with 1 => o | i~0 => l !! i | i~1 => r !! i end end. Local Arguments lookup _ _ _ _ _ !_ / : simpl nomatch. Fixpoint Psingleton_raw {A} (i : positive) (x : A) : Pmap_raw A := match i with | 1 => PNode (Some x) PLeaf PLeaf | i~0 => PNode None (Psingleton_raw i x) PLeaf | i~1 => PNode None PLeaf (Psingleton_raw i x) end. Fixpoint Ppartial_alter_raw {A} (f : option A → option A) (i : positive) (t : Pmap_raw A) {struct t} : Pmap_raw A := match t with | PLeaf => match f None with None => PLeaf | Some x => Psingleton_raw i x end | PNode o l r => match i with | 1 => PNode' (f o) l r | i~0 => PNode' o (Ppartial_alter_raw f i l) r | i~1 => PNode' o l (Ppartial_alter_raw f i r) end end. Fixpoint Pfmap_raw {A B} (f : A → B) (t : Pmap_raw A) : Pmap_raw B := match t with | PLeaf => PLeaf | PNode o l r => PNode (f <$> o) (Pfmap_raw f l) (Pfmap_raw f r) end. Fixpoint Pto_list_raw {A} (j : positive) (t : Pmap_raw A) (acc : list (positive * A)) : list (positive * A) := match t with | PLeaf => acc | PNode o l r => default [] o (λ x, [(Preverse j, x)]) ++ Pto_list_raw (j~0) l (Pto_list_raw (j~1) r acc) end%list. Fixpoint Pomap_raw {A B} (f : A → option B) (t : Pmap_raw A) : Pmap_raw B := match t with | PLeaf => PLeaf | PNode o l r => PNode' (o ≫= f) (Pomap_raw f l) (Pomap_raw f r) end. Fixpoint Pmerge_raw {A B C} (f : option A → option B → option C) (t1 : Pmap_raw A) (t2 : Pmap_raw B) : Pmap_raw C := match t1, t2 with | PLeaf, t2 => Pomap_raw (f None ∘ Some) t2 | t1, PLeaf => Pomap_raw (flip f None ∘ Some) t1 | PNode o1 l1 r1, PNode o2 l2 r2 => PNode' (f o1 o2) (Pmerge_raw f l1 l2) (Pmerge_raw f r1 r2) end. (** Proofs *) Lemma Pmap_wf_canon {A} (t : Pmap_raw A) : (∀ i, t !! i = None) → Pmap_wf t → t = PLeaf. Proof. induction t as [|o l IHl r IHr]; intros Ht ?; auto. assert (o = None) as -> by (apply (Ht 1)). assert (l = PLeaf) as -> by (apply IHl; try apply (λ i, Ht (i~0)); eauto). by assert (r = PLeaf) as -> by (apply IHr; try apply (λ i, Ht (i~1)); eauto). Qed. Lemma Pmap_wf_eq {A} (t1 t2 : Pmap_raw A) : (∀ i, t1 !! i = t2 !! i) → Pmap_wf t1 → Pmap_wf t2 → t1 = t2. Proof. revert t2. induction t1 as [|o1 l1 IHl r1 IHr]; intros [|o2 l2 r2] Ht ??; simpl; auto. - discriminate (Pmap_wf_canon (PNode o2 l2 r2)); eauto. - discriminate (Pmap_wf_canon (PNode o1 l1 r1)); eauto. - f_equal; [apply (Ht 1)| |]. + apply IHl; try apply (λ x, Ht (x~0)); eauto. + apply IHr; try apply (λ x, Ht (x~1)); eauto. Qed. Lemma PNode_lookup {A} o (l r : Pmap_raw A) i : PNode' o l r !! i = PNode o l r !! i. Proof. by destruct i, o, l, r. Qed. Lemma Psingleton_wf {A} i (x : A) : Pmap_wf (Psingleton_raw i x). Proof. induction i as [[]|[]|]; simpl; rewrite ?andb_true_r; auto. Qed. Lemma Ppartial_alter_wf {A} f i (t : Pmap_raw A) : Pmap_wf t → Pmap_wf (Ppartial_alter_raw f i t). Proof. revert i; induction t as [|o l IHl r IHr]; intros i ?; simpl. - destruct (f None); auto using Psingleton_wf. - destruct i; simpl; eauto. Qed. Lemma Pfmap_wf {A B} (f : A → B) t : Pmap_wf t → Pmap_wf (Pfmap_raw f t). Proof. induction t as [|[x|] [] ? [] ?]; simpl in *; rewrite ?andb_True; intuition. Qed. Lemma Pomap_wf {A B} (f : A → option B) t : Pmap_wf t → Pmap_wf (Pomap_raw f t). Proof. induction t; simpl; eauto. Qed. Lemma Pmerge_wf {A B C} (f : option A → option B → option C) t1 t2 : Pmap_wf t1 → Pmap_wf t2 → Pmap_wf (Pmerge_raw f t1 t2). Proof. revert t2. induction t1; intros []; simpl; eauto using Pomap_wf. Qed. Lemma Plookup_empty {A} i : (∅ : Pmap_raw A) !! i = None. Proof. by destruct i. Qed. Lemma Plookup_singleton {A} i (x : A) : Psingleton_raw i x !! i = Some x. Proof. by induction i. Qed. Lemma Plookup_singleton_ne {A} i j (x : A) : i ≠ j → Psingleton_raw i x !! j = None. Proof. revert j. induction i; intros [?|?|]; simpl; auto with congruence. Qed. Lemma Plookup_alter {A} f i (t : Pmap_raw A) : Ppartial_alter_raw f i t !! i = f (t !! i). Proof. revert i; induction t as [|o l IHl r IHr]; intros i; simpl. - by destruct (f None); rewrite ?Plookup_singleton. - destruct i; simpl; rewrite PNode_lookup; simpl; auto. Qed. Lemma Plookup_alter_ne {A} f i j (t : Pmap_raw A) : i ≠ j → Ppartial_alter_raw f i t !! j = t !! j. Proof. revert i j; induction t as [|o l IHl r IHr]; simpl. - by intros; destruct (f None); rewrite ?Plookup_singleton_ne. - by intros [?|?|] [?|?|] ?; simpl; rewrite ?PNode_lookup; simpl; auto. Qed. Lemma Plookup_fmap {A B} (f : A → B) t i : (Pfmap_raw f t) !! i = f <$> t !! i. Proof. revert i. by induction t; intros [?|?|]; simpl. Qed. Lemma Pelem_of_to_list {A} (t : Pmap_raw A) j i acc x : (i,x) ∈ Pto_list_raw j t acc ↔ (∃ i', i = i' ++ Preverse j ∧ t !! i' = Some x) ∨ (i,x) ∈ acc. Proof. split. { revert j acc. induction t as [|[y|] l IHl r IHr]; intros j acc; simpl. - by right. - rewrite elem_of_cons. intros [?|?]; simplify_eq. { left; exists 1. by rewrite (left_id_L 1 (++))%positive. } destruct (IHl (j~0) (Pto_list_raw j~1 r acc)) as [(i'&->&?)|?]; auto. { left; exists (i' ~ 0). by rewrite Preverse_xO, (assoc_L _). } destruct (IHr (j~1) acc) as [(i'&->&?)|?]; auto. left; exists (i' ~ 1). by rewrite Preverse_xI, (assoc_L _). - intros. destruct (IHl (j~0) (Pto_list_raw j~1 r acc)) as [(i'&->&?)|?]; auto. { left; exists (i' ~ 0). by rewrite Preverse_xO, (assoc_L _). } destruct (IHr (j~1) acc) as [(i'&->&?)|?]; auto. left; exists (i' ~ 1). by rewrite Preverse_xI, (assoc_L _). } revert t j i acc. assert (∀ t j i acc, (i, x) ∈ acc → (i, x) ∈ Pto_list_raw j t acc) as help. { intros t; induction t as [|[y|] l IHl r IHr]; intros j i acc; simpl; rewrite ?elem_of_cons; auto. } intros t j ? acc [(i&->&Hi)|?]; [|by auto]. revert j i acc Hi. induction t as [|[y|] l IHl r IHr]; intros j i acc ?; simpl. - done. - rewrite elem_of_cons. destruct i as [i|i|]; simplify_eq/=. + right. apply help. specialize (IHr (j~1) i). rewrite Preverse_xI, (assoc_L _) in IHr. by apply IHr. + right. specialize (IHl (j~0) i). rewrite Preverse_xO, (assoc_L _) in IHl. by apply IHl. + left. by rewrite (left_id_L 1 (++))%positive. - destruct i as [i|i|]; simplify_eq/=. + apply help. specialize (IHr (j~1) i). rewrite Preverse_xI, (assoc_L _) in IHr. by apply IHr. + specialize (IHl (j~0) i). rewrite Preverse_xO, (assoc_L _) in IHl. by apply IHl. Qed. Lemma Pto_list_nodup {A} j (t : Pmap_raw A) acc : (∀ i x, (i ++ Preverse j, x) ∈ acc → t !! i = None) → NoDup acc → NoDup (Pto_list_raw j t acc). Proof. revert j acc. induction t as [|[y|] l IHl r IHr]; simpl; intros j acc Hin ?. - done. - repeat constructor. { rewrite Pelem_of_to_list. intros [(i&Hi&?)|Hj]. { apply (f_equal Plength) in Hi. rewrite Preverse_xO, !Papp_length in Hi; simpl in *; lia. } rewrite Pelem_of_to_list in Hj. destruct Hj as [(i&Hi&?)|Hj]. { apply (f_equal Plength) in Hi. rewrite Preverse_xI, !Papp_length in Hi; simpl in *; lia. } specialize (Hin 1 y). rewrite (left_id_L 1 (++))%positive in Hin. discriminate (Hin Hj). } apply IHl. { intros i x. rewrite Pelem_of_to_list. intros [(?&Hi&?)|Hi]. + rewrite Preverse_xO, Preverse_xI, !(assoc_L _) in Hi. by apply (inj (++ _)) in Hi. + apply (Hin (i~0) x). by rewrite Preverse_xO, (assoc_L _) in Hi. } apply IHr; auto. intros i x Hi. apply (Hin (i~1) x). by rewrite Preverse_xI, (assoc_L _) in Hi. - apply IHl. { intros i x. rewrite Pelem_of_to_list. intros [(?&Hi&?)|Hi]. + rewrite Preverse_xO, Preverse_xI, !(assoc_L _) in Hi. by apply (inj (++ _)) in Hi. + apply (Hin (i~0) x). by rewrite Preverse_xO, (assoc_L _) in Hi. } apply IHr; auto. intros i x Hi. apply (Hin (i~1) x). by rewrite Preverse_xI, (assoc_L _) in Hi. Qed. Lemma Pomap_lookup {A B} (f : A → option B) t i : Pomap_raw f t !! i = t !! i ≫= f. Proof. revert i. induction t as [|o l IHl r IHr]; intros [i|i|]; simpl; rewrite ?PNode_lookup; simpl; auto. Qed. Lemma Pmerge_lookup {A B C} (f : option A → option B → option C) (Hf : f None None = None) t1 t2 i : Pmerge_raw f t1 t2 !! i = f (t1 !! i) (t2 !! i). Proof. revert t2 i; induction t1 as [|o1 l1 IHl1 r1 IHr1]; intros t2 i; simpl. { rewrite Pomap_lookup. by destruct (t2 !! i). } unfold compose, flip. destruct t2 as [|l2 o2 r2]; rewrite PNode_lookup. - by destruct i; rewrite ?Pomap_lookup; simpl; rewrite ?Pomap_lookup; match goal with |- ?o ≫= _ = _ => destruct o end. - destruct i; rewrite ?Pomap_lookup; simpl; auto. Qed. (** Packed version and instance of the finite map type class *) Inductive Pmap (A : Type) : Type := PMap { pmap_car : Pmap_raw A; pmap_prf : Pmap_wf pmap_car }. Arguments PMap {_} _ _. Arguments pmap_car {_} _. Arguments pmap_prf {_} _. Lemma Pmap_eq {A} (m1 m2 : Pmap A) : m1 = m2 ↔ pmap_car m1 = pmap_car m2. Proof. split; [by intros ->|intros]; destruct m1 as [t1 ?], m2 as [t2 ?]. simplify_eq/=; f_equal; apply proof_irrel. Qed. Instance Pmap_eq_dec `{EqDecision A} : EqDecision (Pmap A) := λ m1 m2, match Pmap_raw_eq_dec (pmap_car m1) (pmap_car m2) with | left H => left (proj2 (Pmap_eq m1 m2) H) | right H => right (H ∘ proj1 (Pmap_eq m1 m2)) end. Instance Pempty {A} : Empty (Pmap A) := PMap ∅ I. Instance Plookup {A} : Lookup positive A (Pmap A) := λ i m, pmap_car m !! i. Instance Ppartial_alter {A} : PartialAlter positive A (Pmap A) := λ f i m, let (t,Ht) := m in PMap (partial_alter f i t) (Ppartial_alter_wf f i _ Ht). Instance Pfmap : FMap Pmap := λ A B f m, let (t,Ht) := m in PMap (f <$> t) (Pfmap_wf f _ Ht). Instance Pto_list {A} : FinMapToList positive A (Pmap A) := λ m, let (t,Ht) := m in Pto_list_raw 1 t []. Instance Pomap : OMap Pmap := λ A B f m, let (t,Ht) := m in PMap (omap f t) (Pomap_wf f _ Ht). Instance Pmerge : Merge Pmap := λ A B C f m1 m2, let (t1,Ht1) := m1 in let (t2,Ht2) := m2 in PMap _ (Pmerge_wf f _ _ Ht1 Ht2). Instance Pmap_finmap : FinMap positive Pmap. Proof. split. - by intros ? [t1 ?] [t2 ?] ?; apply Pmap_eq, Pmap_wf_eq. - by intros ? []. - intros ?? [??] ?. by apply Plookup_alter. - intros ?? [??] ??. by apply Plookup_alter_ne. - intros ??? [??]. by apply Plookup_fmap. - intros ? [??]. apply Pto_list_nodup; [|constructor]. intros ??. by rewrite elem_of_nil. - intros ? [??] i x; unfold map_to_list, Pto_list. rewrite Pelem_of_to_list, elem_of_nil. split. by intros [(?&->&?)|]. by left; exists i. - intros ?? ? [??] ?. by apply Pomap_lookup. - intros ??? ?? [??] [??] ?. by apply Pmerge_lookup. Qed. Program Instance Pmap_countable `{Countable A} : Countable (Pmap A) := { encode m := encode (map_to_list m : list (positive * A)); decode p := map_of_list <$> decode p }. Next Obligation. intros A ?? m; simpl. rewrite decode_encode; simpl. by rewrite map_of_to_list. Qed. (** * Finite sets *) (** We construct sets of [positives]s satisfying extensional equality. *) Notation Pset := (mapset Pmap). Instance Pmap_dom {A} : Dom (Pmap A) Pset := mapset_dom. Instance Pmap_dom_spec : FinMapDom positive Pmap Pset := mapset_dom_spec. (** * Fresh numbers *) Fixpoint Pdepth {A} (m : Pmap_raw A) : nat := match m with | PLeaf | PNode None _ _ => O | PNode _ l _ => S (Pdepth l) end. Fixpoint Pfresh_at_depth {A} (m : Pmap_raw A) (d : nat) : option positive := match d, m with | O, (PLeaf | PNode None _ _) => Some 1 | S d, PNode _ l r => match Pfresh_at_depth l d with | Some i => Some (i~0) | None => (~1) <$> Pfresh_at_depth r d end | _, _ => None end. Fixpoint Pfresh_go {A} (m : Pmap_raw A) (d : nat) : option positive := match d with | O => None | S d => match Pfresh_go m d with | Some i => Some i | None => Pfresh_at_depth m d end end. Definition Pfresh {A} (m : Pmap A) : positive := let d := Pdepth (pmap_car m) in match Pfresh_go (pmap_car m) d with | Some i => i | None => Pos.shiftl_nat 1 d end. Lemma Pfresh_at_depth_fresh {A} (m : Pmap_raw A) d i : Pfresh_at_depth m d = Some i → m !! i = None. Proof. revert i m; induction d as [|d IH]. { intros i [|[] l r] ?; naive_solver. } intros i [|o l r] ?; simplify_eq/=. destruct (Pfresh_at_depth l d) as [i'|] eqn:?, (Pfresh_at_depth r d) as [i''|] eqn:?; simplify_eq/=; auto. Qed. Lemma Pfresh_go_fresh {A} (m : Pmap_raw A) d i : Pfresh_go m d = Some i → m !! i = None. Proof. induction d as [|d IH]; intros; simplify_eq/=. destruct (Pfresh_go m d); eauto using Pfresh_at_depth_fresh. Qed. Lemma Pfresh_depth {A} (m : Pmap_raw A) : m !! Pos.shiftl_nat 1 (Pdepth m) = None. Proof. induction m as [|[x|] l IHl r IHr]; auto. Qed. Lemma Pfresh_fresh {A} (m : Pmap A) : m !! Pfresh m = None. Proof. destruct m as [m ?]; unfold lookup, Plookup, Pfresh; simpl. destruct (Pfresh_go m _) eqn:?; eauto using Pfresh_go_fresh, Pfresh_depth. Qed. Instance Pset_fresh : Fresh positive Pset := λ X, let (m) := X in Pfresh m. Instance Pset_fresh_spec : FreshSpec positive Pset. Proof. split. - apply _. - intros X Y; rewrite <-elem_of_equiv_L. by intros ->. - unfold elem_of, mapset_elem_of, fresh; intros [m]; simpl. by rewrite Pfresh_fresh. Qed.